Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Concrete less sensitive for cracks than previously thought

21.03.2003


Reinforced high-strength concrete can crack due to stresses that develop during the hardening process. However, this has been found to be surprisingly less quick than previously thought. Due to Dutch research, extra steps during the hardening process can be omitted. This will result in cheaper concrete.



Maya Sule from Delft University of Technology tested specimens of high strength concrete (concrete with little water) in a temperature stress testing machine (TSTM). Such tests indicate the progression of the stress development in the concrete specimens. They also ’predict’ the moment at which cracks will occur. Freshly poured concrete radiates heat during the hardening process and expands as a result of this. Upon cooling the concrete contracts again. If this so-called temperature contraction is prevented, for example due to the concrete being poured upon an existing foundation, cracks occur. As high strength concrete contains less water than normal concrete, the contraction is further increased due to the mix drying out on the inside.

The researchers assessed the nature of the crack formation by placing test specimens of non-reinforced high-strength concrete under tension. This led to a single through-crack. However, dependent on the reinforcement method used there were also some test specimens with shallow cracks which did not seriously weaken the test specimen. The non-reinforced test specimen with a single through-crack, completely cracked much more quickly than the reinforced test piece. In other words, reinforced high-strength concrete is less sensitive for cracks than non-reinforced high-strength concrete.


This means that fewer measures to prevent cracking need to be taken during the drying process. In practice this means that the concrete does not have to be cooled as much during the hardening process. Also less contraction joints (which absorb the expansion) need to be made. As well as saving costs this is also better for the environment.

For further information please contact Dr Maya Sule (Department of Materials Science and Technology, Delft University of Technology) tel. +31 (0)15 278 4324, fax +31 (0)15 278 5895, e-mail: m.sule@citg.tudelft.nl. The doctoral thesis was defended on 10 March 2003. Ms Sule’s supervisor was Prof. K. van Breugel.

Nalinie Moerlie | alfa
Further information:
http://www.nwo.nl/

More articles from Materials Sciences:

nachricht Using fine-tuning for record-breaking performance
14.11.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Materials scientist creates fabric alternative to batteries for wearable devices
12.11.2018 | University of Massachusetts at Amherst

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

How algae and carbon fibers could sustainably reduce the athmospheric carbon dioxide concentration

14.11.2018 | Life Sciences

NIH scientists illuminate causes of hepatitis b virus-associated acute liver failure

14.11.2018 | Life Sciences

The unintended consequences of dams and reservoirs

14.11.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>