Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Computer program reveals optimum microstructure for new materials

07.01.2003


These images show shapes that a computer program found as the optimum structure for a composite material that conducts both heat and electricity.



Technique could help bring efficiency of biology to man-made materials

A Princeton chemist has developed a general mathematical system for designing materials that perform two functions at once, even when the desired properties sometimes conflict with each other.

Salvatore Torquato and colleagues used computers to calculate the optimum structure for any material that is a composite of two substances with differing properties. The achievement is the first simple example of a mathematically rigorous method for optimizing the design of multifunctional composites, which are an increasingly common kind of material.



The approach could help bring to man-made materials the efficiency of design that characterizes so many biological materials. "Biological materials are inherently multifunctional," said Torquato. "They have evolved over millions of years to cope with a wide range of situations, so they perform a variety of functions well."

A tree, for example, has to support its weight and resist winds while transporting liquids up and down its length, said Torquato, who is a professor in the Princeton Materials Institute as well as the Department of Chemistry. "Until our work, however, there has been no clear and simple example that rigorously demonstrates the effect of competing property demands on composite microstructures."

In addition to its possible applications in materials science, the method may help biologists study natural materials, such as the walls of a cell, to understand why they are built as they are. "Using rigorous optimization techniques, we are now in a position to test some of the basic tenets of biology," Torquato said. "Are there elements of biology -- perhaps subsystems within an organism or cell -- that are optimized in any sense?"

Torquato and co-authors Sangil Hyun, a postdoctoral fellow, and Aleksandar Donev, a graduate student, described their findings in a paper published in the Dec. 23 edition of Physical Review Letters.

In their paper, the scientists demonstrated their approach by finding the ideal structure for a composite that is good at conducting both electricity and heat. Many materials already are good at both those tasks, but Torquato chose ones that are good at only one or the other. Running the scientists’ program, the computer arrived at surprisingly complex shapes as the optimum way in which the two materials should mix with each other at a microscopic scale.

The technique is general and could be used to optimize many properties, Torquato said. The technology already exists to make materials assemble themselves into finely tuned micro-scale patterns like the ones the scientists generated in their demonstration, Torquato said.

"I think it’s phenomenal work and it’s something that is very needed and timely," said Jeff Brinker, a senior scientist at Sandia National Laboratory and professor of chemical and nuclear engineering at the University of New Mexico. Brinker is preparing to collaborate with Torquato to test the idea in actual materials.

As fabrication techniques improve, materials scientists increasingly need such theoretical work to guide them, Brinker said. "How should we direct the self assembly? Sometimes it’s not very intuitive what the optimum structure should be."

The shapes produced by the computer are interesting in themselves, said Torquato. The best structure for simultaneous heat and electricity flow turned out to be a complex shape called a "bicontinuous triply periodic minimal surface," which Torquato recognized from other situations. A minimal surface is one that takes up the least amount of area for a given volume. A soap bubble is a common example of a minimal surface. Usually, this shape arises from a need to minimize surface tension. The researchers were surprised to see a minimal surface in their ideal conductor because neither of their stipulated properties have anything to do with surface tension.

Studying these non-intuitive shapes may offer insights into the relation between structure and function in both biological and man-made materials, Torquato said. "These results and the shapes we found suggest to me that there are incredibly rich opportunities that have not even been tapped into," he said.

Steven Schultz | EurekAlert!
Further information:
http://www.princeton.edu/

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Global study of world's beaches shows threat to protected areas

19.07.2018 | Earth Sciences

New creepy, crawly search and rescue robot developed at Ben-Gurion U

19.07.2018 | Power and Electrical Engineering

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>