Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Super multi-use minerals unveiled

23.06.2008
This material forms around a third of the average packet of washing powder and helps refine 99 per cent of the world's petrol*.

It is also used to clean up nuclear waste. This extremely useful material is a zeolite. In its natural form it originates from volcanoes but it is synthesised for commercial purposes. A European team of scientists has revealed, for the first time, its chemical structure using the ESRF. This research, published in Nature Materials on 22 June, opens doors to more effective zeolites in the future.

Zeolites are crystalline white minerals, mostly made of aluminium, silicon and oxygen. Their structure is like molecular scaffolding, similar to a sieve. Thanks to this structure, they are frequently used as a “molecular sieve”. This means that with their pores they can separate different molecules and cause different reactions, which are crucial in treating petrol and producing chemicals. Zeolites can also provoke ion exchange, which is useful in water softening or in the removal of nuclear waste (by filtering the radioactive components).

Due to their importance in industry, there is extensive research on zeolites world-wide. However, a crucial aspect about these minerals is still not known. Their functioning and effectiveness depends on different parameters, such as the size of their pores and the distribution of aluminium in the structure of the zeolites. However, the location of the active aluminium remains unknown in many of these materials.

The team from the ETH Zurich, the European Synchrotron Radiation Facility (ESRF), Diamond Light source, the University of Torino and the University of Hamburg have determined unambiguously and directly the distribution of aluminium in zeolites using the technique of X-rays standing wave at the ESRF.

The object of the study was a scolecite zeolite, a natural mineral stemming from the zeolite-rich region of Puna in India. Natural zeolites are not so commonly used in industry because they tend to have more impurities than those synthesised, but they can be used in cleaning nuclear waste. After the Chernobyl catastrophe, tons of zeolites were used with the aim of cleaning the radioactively contaminated area.

The results from the experiments at the ESRF show optimism for the future of zeolites. “By being able to answer the question of where the active sites are, we open up the door to understanding the structure–performance relation. This will lead to ways of improving synthetic zeolites”, explains Jeroen van Bokhoven, corresponding author of the article in Nature Materials.

The next challenge for the team is to study synthetic zeolites with the same technique. Whilst natural zeolites, such as scolecite, contain crystals in the millimetre range, the synthetic ones tend to have much smaller grains, often not larger than a few micrometres. “We have also begun to investigate an industrial synthesised zeolite, but the study is as of yet not complete”, explains Joerg Zegenhagen, in charge of the ESRF beamline where experiments were carried out. “We are currently developing the different beamline elements so that in the very near future we can have the same exhaustive amount of information for synthetic zeolites as for scolecite”, he concludes.

*According to Material World, BBC4, 19 January 2006.

Montserrat Capellas | alfa
Further information:
http://www.esrf.fr/news/general/zeolites

More articles from Materials Sciences:

nachricht New method inverts the self-assembly of liquid crystals
15.04.2019 | University of Luxembourg

nachricht 'Deep learning' casts wide net for novel 2D materials
11.04.2019 | Rice University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

Im Focus: A long-distance relationship in femtoseconds

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound.

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a...

Im Focus: Researchers 3D print metamaterials with novel optical properties

Engineers create novel optical devices, including a moth eye-inspired omnidirectional microwave antenna

A team of engineers at Tufts University has developed a series of 3D printed metamaterials with unique microwave or optical properties that go beyond what is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

New automated biological-sample analysis systems to accelerate disease detection

18.04.2019 | Life Sciences

Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

18.04.2019 | Physics and Astronomy

New eDNA technology used to quickly assess coral reefs

18.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>