Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers develop ultra low-cost plastic memory

17.06.2008
Researchers at the Zernike Institute of Advanced Materials at the University of Groningen have developed a technology for a plastic ferro-electric diode which they believe will achieve a breakthrough in the development of ultra low-cost plastic memory material. Their findings will be published in the July edition of Nature Materials, a publication of the leading scientific journal Nature.

The newly developed technology is similar to that used in Flash memory chips. In both cases, the memory retains data without being connected to a power source.

Flash memory chips are used in memory sticks, MP3 players, cellular phones and in the memory cards of digital cameras. The researchers at the Zernike Institute of Advanced Materials expect the new technology to lead to the development of comparable products possibly even more significant.

One product they have in mind is an electronic price tag which could be read radiographically at the cash desk of retail stores, replacing the bar codes currently in use. Another possible application is for the material to be used in packaging material which could warn consumers when a product is nearing its expiration date.

Plastic transistor
In 2005, a joint team of researchers from the University of Groningen and Philips already successfully integrated a ferro-electric polymer into a plastic transistor. Because the ferro-electric material can be switched between two different stable states through the use of a voltage pulse, it operates as a ‘non-volatile’ memory (meaning that the material retains data without being connected to a power source). The disadvantage of such a transistor is that three connections are needed for programming and reading out the memory, complicating the fabrication. The challenge was therefore to realize comparable functionality within a memory component carrying only two connections: a diode.
Ferro-electric diode
The breakthrough was accomplished during the research project of PhD student Kamal Asadi, which was financed by the University of Groningen. It is based on a radically new concept: instead of stacking a layer of semiconducting material on a layer of ferro-electric material, a mixture of these two materials is used. The ferro-electric characteristic of the mixture is then used to direct current through the semi-conducting part of the mixture.

The new memory diode can be programmed quickly, retains data for a long time and operates at room temperature. The voltages needed for programming are low enough for the diode to be used in commercial applications and the material can be manufactured at low cost using large-scale industrial production techniques. The University of Groningen has obtained a patent on the new material.

Eelco Salverda | alfa
Further information:
http://www.nature.com/naturematerials
http://www.rug.nl

More articles from Materials Sciences:

nachricht In borophene, boundaries are no barrier
17.07.2018 | Rice University

nachricht Research finds new molecular structures in boron-based nanoclusters
13.07.2018 | Brown University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>