Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Colloidal inks form self-supporting scaffolds through robocasting

20.06.2002


A new way to assemble complex, three-dimensional structures from specially formulated colloidal inks could find use in advanced ceramics, sensors, composites, catalyst supports, tissue engineering scaffolds and photonic materials.



As will be reported in the July 9 issue of the journal Langmuir, scientists have developed colloidal, gel-based inks that form self-supporting features through a robotic deposition process called robocasting. A computer-controlled robot squeezes the ink out of a syringe, almost like a cake decorator, building the desired structure layer by layer.

"Our goal is to make designer materials that can’t be made by conventional forming techniques," said Jennifer Lewis, a professor of materials science and engineering and of chemical engineering at the University of Illinois at Urbana-Champaign.


The work is a collaboration between Lewis, Illinois graduate student James Smay, and Joseph Cesarano, a staff scientist at the U.S. Department of Energy’s Sandia National Laboratories in Albuquerque, N.M. Cesarano pioneered the concept of robocasting several years ago and implemented it as an alternative "rapid prototyping" method for producing ceramic components. The Illinois-Sandia group is advancing the technique to finer scales and designing special inks that can form self-supporting features.

"The directed assembly of fine-scale, three-dimensional structures containing spanning elements required the development of concentrated colloidal, gel-based inks," Lewis said. "These inks must first flow through a very fine deposition nozzle and then quickly ’set’ to maintain their shape while simultaneously bonding to the underlying layer."

The researchers have created structures with features as small as 100 microns (about the diameter of a human hair) and have spanned gaps as large as 2 millimeters.

The elastic properties and the viscous response of the ink can be "tuned" by tailoring the strength of the interparticle attractions, Lewis said. Because of the dynamic nature of the resulting gel, the particle network forms very quickly after the ink is pushed through the syringe, providing the desired shape retention.

Through careful control of colloidal forces, the researchers not only can produce complex shapes that can’t be made by conventional molding or extrusion processes, they also can build in complexity with respect to chemical composition.

"The robotic deposition equipment has the capability of handling multiple inks and dispensing them simultaneously," Lewis said. "As the relative rates of deposited ink are regulated, structures can be built that have compositional variations in them."

Inks are housed in separate syringes mounted on the robotic deposition apparatus and can be mixed or deposited independently. The ink exits the nozzle as a continuous, rod-like filament that is deposited onto a moving platform, yielding a two-dimensional pattern. After a layer is generated, the stage is raised and another layer is deposited. This process is repeated until the desired structure is produced. The machine’s motion is controlled by a computer program called RoboCAD, developed by Smay. The software allows users to rapidly design and build complex, three-dimensional structures by simply designing layers as two-dimensional drawings.

"Ink can be made from nearly any particulate material that can be suspended in solution, as long as the interparticle forces can be tuned to yield the desired viscoelastic response," Lewis said. "We have made inks out of silica, alumina, lead zirconate titanate, and hydroxyapatite (the basic inorganic constituent of bone) colloidal particles. We also can deposit polymeric, metallic, and semiconducting colloidal inks."


The National Science Foundation and the Department of Energy funded this work

James E. Kloeppel | EurekAlert!

More articles from Materials Sciences:

nachricht High-efficiency thermoelectric materials: New insights into tin selenide
25.04.2019 | Helmholtz-Zentrum Berlin für Materialien und Energie

nachricht Scientists develop low-cost energy-efficient materials
24.04.2019 | National University of Science and Technology MISIS

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Full speed ahead for SmartEEs at Automotive Interiors Expo 2019

Flexible, organic and printed electronics conquer everyday life. The forecasts for growth promise increasing markets and opportunities for the industry. In Europe, top institutions and companies are engaged in research and further development of these technologies for tomorrow's markets and applications. However, access by SMEs is difficult. The European project SmartEEs - Smart Emerging Electronics Servicing works on the establishment of a European innovation network, which supports both the access to competences as well as the support of the enterprises with the assumption of innovations and the progress up to the commercialization.

It surrounds us and almost unconsciously accompanies us through everyday life - printed electronics. It starts with smart labels or RFID tags in clothing, we...

Im Focus: Energy-saving new LED phosphor

The human eye is particularly sensitive to green, but less sensitive to blue and red. Chemists led by Hubert Huppertz at the University of Innsbruck have now developed a new red phosphor whose light is well perceived by the eye. This increases the light yield of white LEDs by around one sixth, which can significantly improve the energy efficiency of lighting systems.

Light emitting diodes or LEDs are only able to produce light of a certain colour. However, white light can be created using different colour mixing processes.

Im Focus: Quantum gas turns supersolid

Researchers led by Francesca Ferlaino from the University of Innsbruck and the Austrian Academy of Sciences report in Physical Review X on the observation of supersolid behavior in dipolar quantum gases of erbium and dysprosium. In the dysprosium gas these properties are unprecedentedly long-lived. This sets the stage for future investigations into the nature of this exotic phase of matter.

Supersolidity is a paradoxical state where the matter is both crystallized and superfluid. Predicted 50 years ago, such a counter-intuitive phase, featuring...

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

High-efficiency thermoelectric materials: New insights into tin selenide

25.04.2019 | Materials Sciences

Salish seafloor mapping identifies earthquake and tsunami risks

25.04.2019 | Earth Sciences

Using DNA templates to harness the sun's energy

25.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>