Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New material can find a needle in a nuclear waste haystack

04.03.2008
Nuclear power has advantages, but, if this method of making power is to be viable long term, discovering new solutions to radioactive waste disposal and other problems are critical. Otherwise nuclear power is unlikely to become mainstream.

A team of Northwestern University chemists is the first to focus on metal sulfide materials as a possible source for nuclear waste remediation methods. Their new material is extremely successful in removing strontium from a sodium-heavy solution, which has concentrations similar to those in real liquid nuclear waste. Strontium-90, a major waste component, is one of the more dangerous radioactive fission materials created within a nuclear reactor.

The results will be published online the week of March 3 in the Proceedings of the National Academy of Sciences (PNAS). By taking advantage of ion exchange, the new method captures and concentrates strontium as a solid material, leaving clean liquid behind. In the case of actual nuclear waste remediation, the radioactive solid could then be dealt with separately -- handled, moved, stored or recycled -- and the liquid disposed.

“It is a very difficult job to capture strontium in vast amounts of liquid nuclear waste,” said Mercouri G. Kanatzidis, Charles E. and Emma H. Morrison Professor of Chemistry in the Weinberg College of Arts and Sciences and the paper’s senior author. “Sodium and calcium ions, which are nonradioactive, are present in such enormous amounts compared to strontium that they can be captured instead of the radioactive material, interfering with remediation.”

Strontium is like a needle in a haystack: sodium ions outnumber strontium ions by more than a million to one. The material developed at Northwestern -- a layered metal sulfide made of potassium, manganese, tin and sulfur called KMS-1 -- attracts strontium but not sodium.

“The metal sulfide did much, much better than we expected at removing strontium in such an excess of sodium,” said Kanatzidis. “We were really amazed at how well it discriminates against sodium and think we have something special. As far as we can tell, this is the best material out there for this kind of application.”

KMS-1 works at the extremes of the pH scale -- in very basic and very acidic solutions, the conditions common in nuclear waste -- and everywhere in between. Metal oxides and polymer resins, the materials currently used in nuclear waste remediation, perform reasonably well but are more limited than KMS-1: each typically works in either basic or acidic conditions but not both and definitely not across the pH scale.

In earlier work, Kanatzidis and his team had found KMS-1 to be very quick and facile at ion exchange. (The material gives up an ion and takes another to maintain charge balance.) Knowing this and also that the ion exchange process is a removal process, the researchers decided that strontium was an interesting ion with which to test their new material.

The solution the researchers used in the lab contained strontium and two “interfering” ions, sodium and calcium, in concentrations like those found in the nuclear waste industry. (Nonradioactive strontium, which works the same as the radioactive version, was used in the experiments.) KMS-1, a free flowing black-brown powder, was packaged like tea in a teabag and then dropped into the solution. The all-important ion exchange followed: the metal sulfide “teabag” soaked up the strontium and gave off potassium, which is not radioactive, into the liquid.

KMS-1 does its remarkable work targeting only strontium by taking advantage of two things: strontium is a heavier ion than calcium, and sulfur (a component of KMS-1) attracts heavier ions; and KMS-1 attracts ions with more charge so it attracts strontium, which has a charge of 2+, and doesn’t attract sodium, which only has a charge of 1+. So, as Kanatzidis likes to say, “Our material beats both sodium and calcium.”

“The nuclear power process generates enormous amounts of radioactive liquid waste, which is stored in large tanks,” said Kanatzidis. “If we can concentrate the radioactive material, it can be dealt with and the nonradioactive water thrown away. I can imagine our material as part of a cleansing filter that the solution is passed through.”

Looking to the future, to be a scaleable and affordable remediation method, the metal in the metal sulfide needs to be inexpensive and readily available and also make a stable compound.

“We focused on potassium, manganese and tin because we have been working with them for some time,” said Manolis J. Manos, a postdoctoral fellow at Northwestern and lead author of the paper. “All three metals make stable compounds and are common and abundant.”

“Our next step is to do systematic studies, including using an actual waste solution from the nuclear power industry, to learn how KMS-1 works and how to make even better metal sulfides,” added Manos.

Megan Fellman | EurekAlert!
Further information:
http://www.northwestern.edu

More articles from Materials Sciences:

nachricht From foam to bone: Plant cellulose can pave the way for healthy bone implants
19.03.2019 | University of British Columbia

nachricht Additive printing processes for flexible touchscreens: increased materials and cost efficiency
19.03.2019 | INM - Leibniz-Institut für Neue Materialien gGmbH

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Solving the efficiency of Gram-negative bacteria

22.03.2019 | Life Sciences

Bacteria bide their time when antibiotics attack

22.03.2019 | Life Sciences

Open source software helps researchers extract key insights from huge sensor datasets

22.03.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>