Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Paving The Way For Green Roads

25.02.2008
Kevin Gardner sees green roads right around the corner. "A lot of the infrastructure in this country needs to be re-built," says Gardner, University of New Hampshire associate professor of civil engineering and director of the Environmental Research Group. "We have a real opportunity to re-build the infrastructure the right way with sustainable materials and socially sensitive designs that protect air, water, land, and human resources."

Funded by the Federal Highway Administration and pooled state highway funds, as well as Environmental Protection Agency (EPA) grants for specific research projects, Gardner established the new Recycled Materials Resource Management Center (RMRC) at UNH on June 1, 2007. The RRMC is a collaboration between UNH environmental and social impact researchers and University Wisconsin-Madison geotechnical, or soil behavior, faculty.

Working closely with a board of advisors composed of representatives from the EPA, the Federal Highway Administration and the American Association of State Highway and Transportation Officials, as well as numerous other stakeholders, one of the Center's activities is to establish a green roads program that develops criteria for what makes a roadway green.

Similar to the green buildings program established by the U.S. Green Building Council, which triggered a boom in green building construction, a green roads program, it is believed, will give the green light to sweeping reforms in the way we build roads. The project is full of twists and turns. Today's urban sprawl requires road builders to confront a range of sensitive issues involving air, water, land, building materials, energy use, biodiversity, and social capital-an index of social productivity and quality of life.

To jump-start the process, the RMRC faculty teamed up with the UNH Stormwater Center in Durham. Their task is to account for both environmental and social impacts of road-building, as well as establish better uses of recycled and virgin aggregate materials, such as crushed rock, much of which must be transported from New Hampshire. Green standards, according to Gardner, will give road builders the guidelines they need to effectively reduce the environmental impacts (such as carbon footprint, wetlands disturbance, and stormwater runoff generation) and improve the quality of life in communities affected by infrastructure re-construction.

The first step is to figure out how to reduce the 300 million tons of virgin aggregate materials mined in this country every year. The U.S. currently recycles 90% of used asphalt, but still uses a large percentage of virgin materials in the recycled mix. The question is, can pavement be made with 90% recycled asphalt, or does it have to be less than 40% or even 20% to get a roadbed that lasts? What happens to the modifiers that bind these materials over time? How recyclable are the recycled materials?

"The cost of building a road is not reflected fully in the price of materials," Gardner adds. "The total cost of mining virgin materials, for instance, involves not only the cost of materials and labor, but also the environmental cost at the mining site, the environmental costs (such as air pollution and its associated health care costs) of transporting these materials to the building site, and the environmental costs of building the equipment to mine and transport material and build the roads."

To account for these hidden costs, the RMRC created a computer model that Gardner's Ph.D. student Alberta "Birdie" Carpenter uses to capture the full environmental, social and material costs of road-building. The model was recently "road-tested" in the Pittsburgh region to help identify the significant influence that materials recycling can have on regional air quality, hazardous waste generation, greenhouse gas emissions and other environmental impacts.

Research and development of better ways to re-build infrastructure is only half the battle. The other half is education and outreach to developers, road-builders, and engineering students. In addition to publishing and publicizing the results of their research and green roads standards, the RMRC is now offering a sustainable engineering class at UNH and expects to have fellowship and Ph.D. programs by 2010.

"The first green roads will probably start with small housing developments and municipalities because developers and local developers have already seen the benefits of green building construction," says Gardner, "but as the benefits and cost-savings begin to be realized on a bigger scale, we believe the RMRC green roads program will pave the way for rapid adaptation at all levels of road-building."

Debra JohnyBear | EurekAlert!
Further information:
http://www.unh.edu

More articles from Materials Sciences:

nachricht New materials: Growing polymer pelts
19.11.2018 | Karlsruher Institut für Technologie (KIT)

nachricht Why geckos can stick to walls
19.11.2018 | Jacobs University Bremen gGmbH

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

New materials: Growing polymer pelts

19.11.2018 | Materials Sciences

Earthquake researchers finalists for supercomputing prize

19.11.2018 | Information Technology

Controlling organ growth with light

19.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>