Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel organic metal hybrids that will revolutionize materials science and chemical engineering

20.02.2008
A novel class of hybrid materials made from metals and organic compounds is changing the face of solid state chemistry and materials science just 10 years after its discovery, with applications already in safe storage of highly inflammable gases such as hydrogen and methane.

Europe is aiming to capitalise on core strengths in the field and build critical mass by combining the diverse range of skills required within a coherent research network, following a major workshop organised by the European Science Foundation (ESF).

The materials called MOFs (Metal Organic Frameworks) represent one of the biggest breakthroughs in solid state science whose potential is only just being realised, according to the ESF workshop convenor Gérard Férey. “The domain is currently exploding, and there are so many potential applications that it is difficult to decide how to prioritise them. The only limit is our imagination,” said Férey.

There is no doubt though that the first big application of MOFs - storage of gases - will be highly important, given the urgency of developing alternatives to fossil fuels for automobiles. “For hydrogen storage, MOFs are already used, and many carmakers have these products in prototypes,” said Férey.

MOFs are porous materials with microscopic sized holes, resembling honeycombs at molecular dimensions. This property of having astronomical numbers of tiny holes within a relatively small volume can be exploited in various ways, one of which is as a repository for gases. Gas molecules diffuse into the MOF solid and are contained within its pores. In the case of gas storage, MOFs offer the crucial advantage of soaking up some of the gas pressure exerted by the molecules. This makes hydrogen derived from non-fossil energy sources such as fuel cells, or even genetically engineered plants, potentially viable as a fuel for cars while the alternative of pressurised canisters is not. The key difference is that the amount of gas stored in a conventional cylinder at say 200 atmospheres pressure could be accommodated in an MOF vessel of the same size at just 30 atmospheres, which is much safer.

The porous nature of MOFs enables them to be exploited in quite another way as catalysts to accelerate chemical reactions for a wide variety of materials production and pharmaceutical applications, although this field, as Férey noted, is still in its infancy. Yet already the field is gaining interest beyond academia from serious companies, with a significant development at the ESF workshop being the presence and support of German chemicals giant BASF. This in turn has provided high endorsement of the field’s potential and has stimulated interest from other companies, according to Férey.

But several challenges remain before this potential can be realised, the first one being to assemble research and development teams with the right body of skills. As Férey noted, many of the skills already exist but the researchers need to expand their horizons and focus more broadly on the big picture beyond their specialised domains. There is also the technical challenge of learning first how these materials are formed, and then applying the knowledge to design MOFs matched to specific requirements. MOFs are crystalline solids that form in highly regular patterns from solutions, just as salts and sugars do. Researchers need to learn how to manipulate the starting conditions to obtain just the crystalline composition and arrangement they want.

Gérard Férey | EurekAlert!
Further information:
http://www.esf.org/fileadmin/be_user/ew_docs/06-078_Report.pdf

More articles from Materials Sciences:

nachricht Freiburg researcher investigate the origins of surface texture
17.02.2020 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Understanding Metal Ion Release from Hip Implants
17.02.2020 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Journey to the center of Mars

20.02.2020 | Physics and Astronomy

Laser writing enables practical flat optics and data storage in glass

20.02.2020 | Physics and Astronomy

New graphene-based metasurface capable of independent amplitude and phase control of light

20.02.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>