Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel organic metal hybrids that will revolutionize materials science and chemical engineering

20.02.2008
A novel class of hybrid materials made from metals and organic compounds is changing the face of solid state chemistry and materials science just 10 years after its discovery, with applications already in safe storage of highly inflammable gases such as hydrogen and methane.

Europe is aiming to capitalise on core strengths in the field and build critical mass by combining the diverse range of skills required within a coherent research network, following a major workshop organised by the European Science Foundation (ESF).

The materials called MOFs (Metal Organic Frameworks) represent one of the biggest breakthroughs in solid state science whose potential is only just being realised, according to the ESF workshop convenor Gérard Férey. “The domain is currently exploding, and there are so many potential applications that it is difficult to decide how to prioritise them. The only limit is our imagination,” said Férey.

There is no doubt though that the first big application of MOFs - storage of gases - will be highly important, given the urgency of developing alternatives to fossil fuels for automobiles. “For hydrogen storage, MOFs are already used, and many carmakers have these products in prototypes,” said Férey.

MOFs are porous materials with microscopic sized holes, resembling honeycombs at molecular dimensions. This property of having astronomical numbers of tiny holes within a relatively small volume can be exploited in various ways, one of which is as a repository for gases. Gas molecules diffuse into the MOF solid and are contained within its pores. In the case of gas storage, MOFs offer the crucial advantage of soaking up some of the gas pressure exerted by the molecules. This makes hydrogen derived from non-fossil energy sources such as fuel cells, or even genetically engineered plants, potentially viable as a fuel for cars while the alternative of pressurised canisters is not. The key difference is that the amount of gas stored in a conventional cylinder at say 200 atmospheres pressure could be accommodated in an MOF vessel of the same size at just 30 atmospheres, which is much safer.

The porous nature of MOFs enables them to be exploited in quite another way as catalysts to accelerate chemical reactions for a wide variety of materials production and pharmaceutical applications, although this field, as Férey noted, is still in its infancy. Yet already the field is gaining interest beyond academia from serious companies, with a significant development at the ESF workshop being the presence and support of German chemicals giant BASF. This in turn has provided high endorsement of the field’s potential and has stimulated interest from other companies, according to Férey.

But several challenges remain before this potential can be realised, the first one being to assemble research and development teams with the right body of skills. As Férey noted, many of the skills already exist but the researchers need to expand their horizons and focus more broadly on the big picture beyond their specialised domains. There is also the technical challenge of learning first how these materials are formed, and then applying the knowledge to design MOFs matched to specific requirements. MOFs are crystalline solids that form in highly regular patterns from solutions, just as salts and sugars do. Researchers need to learn how to manipulate the starting conditions to obtain just the crystalline composition and arrangement they want.

Gérard Férey | EurekAlert!
Further information:
http://www.esf.org/fileadmin/be_user/ew_docs/06-078_Report.pdf

More articles from Materials Sciences:

nachricht Caterpillars of the wax moth love eating plastic: Fraunhofer LBF investigates degradation process
06.08.2020 | Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF

nachricht Machine learning methods provide new insights into organic-inorganic interfaces
04.08.2020 | Technische Universität Graz

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: ScanCut project completed: laser cutting enables more intricate plug connector designs

Scientists at the Fraunhofer Institute for Laser Technology ILT have come up with a striking new addition to contact stamping technologies in the ERDF research project ScanCut. In collaboration with industry partners from North Rhine-Westphalia, the Aachen-based team of researchers developed a hybrid manufacturing process for the laser cutting of thin-walled metal strips. This new process makes it possible to fabricate even the tiniest details of contact parts in an eco-friendly, high-precision and efficient manner.

Plug connectors are tiny and, at first glance, unremarkable – yet modern vehicles would be unable to function without them. Several thousand plug connectors...

Im Focus: New Strategy Against Osteoporosis

An international research team has found a new approach that may be able to reduce bone loss in osteoporosis and maintain bone health.

Osteoporosis is the most common age-related bone disease which affects hundreds of millions of individuals worldwide. It is estimated that one in three women...

Im Focus: AI & single-cell genomics

New software predicts cell fate

Traditional single-cell sequencing methods help to reveal insights about cellular differences and functions - but they do this with static snapshots only...

Im Focus: TU Graz Researchers synthesize nanoparticles tailored for special applications

“Core-shell” clusters pave the way for new efficient nanomaterials that make catalysts, magnetic and laser sensors or measuring devices for detecting electromagnetic radiation more efficient.

Whether in innovative high-tech materials, more powerful computer chips, pharmaceuticals or in the field of renewable energies, nanoparticles – smallest...

Im Focus: Tailored light inspired by nature

An international research team with Prof. Cornelia Denz from the Institute of Applied Physics at the University of Münster develop for the first time light fields using caustics that do not change during propagation. With the new method, the physicists cleverly exploit light structures that can be seen in rainbows or when light is transmitted through drinking glasses.

Modern applications as high resolution microsopy or micro- or nanoscale material processing require customized laser beams that do not change during...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“Conference on Laser Polishing – LaP 2020”: The final touches for surfaces

23.07.2020 | Event News

Conference radar for cybersecurity

21.07.2020 | Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

 
Latest News

Rare Earth Elements in Norwegian Fjords?

06.08.2020 | Earth Sciences

Anode material for safe batteries with a long cycle life

06.08.2020 | Power and Electrical Engineering

Turning carbon dioxide into liquid fuel

06.08.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>