Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Exotic material keeps frustrated electrons flipping

13.02.2008
RIKEN scientists have discovered a new state of matter with unusual magnetic properties—its constituent electrons are in a continuous state of flux, even at incredibly cold temperatures.

Magnetic, temperature and structural studies have yielded new insights on the material sodium iridium oxide

RIKEN scientists have discovered a new state of matter with unusual magnetic properties—its constituent electrons are in a continuous state of flux, even at incredibly cold temperatures.

As electrons spin, they generate a magnetic field which can point ‘up’ or ‘down’. Within solid materials, an electron will generally try to adopt the opposite spin orientation to its neighbor, just as two bar magnets will flip around so that north and south poles line up next to each other.

In more common lattice structures, where atoms stack up like oranges on a greengrocers stall, it’s easy for electrons to achieve this ordered arrangement. But in certain materials, the arrangement of atoms can make it impossible for the electrons to line up with all of their neighbors, and they are said to be ‘frustrated’.

One example of a frustrated material contains a network of atoms arranged into corner-sharing triangles. This is called a kagome structure after a type of Japanese basket that has the same pattern (Fig. 1).

The electrons’ response to this frustration is to constantly flip their magnetic fields to reduce the repulsion between them. In this ‘quantum spin-liquid state’, the quantum effect is expected to stop flipping electrons from freezing out into a static arrangement even at absolute zero (-273.15 ˚C—the coldest temperature possible). Several materials have been claimed to contain possible quantum spin-liquid states, but none have been confirmed.

Hidenori Takagi and Yoshihiko Okamoto of RIKEN’s Discovery Research Institute, Wako, and colleagues, have now found that sodium iridium oxide (Na4Ir3O8) exhibits quantum spin-liquid behavior, even when cooled to -271 ˚C. This was confirmed by magnetic, temperature and structural studies, involving both neutron and x-ray diffraction.

The material contains a network of iridium atoms that form a three-dimensional pattern of corner-shared triangles—dubbed a hyperkagome lattice (Fig. 2), which can be viewed as a slightly twisted—but different structure—to the kagome structure, explains Takagi. Theoretical calculations are consistent with this type of structure showing spin-liquid behavior.

“We believe it is the strongest candidate [for a quantum spin liquid],” says Takagi.

The scientists say that the material is “a fascinating playground for quantum magnetism”, and now hope to study the spin-liquid state further. This should to help build up a detailed description of the phenomenon using quantum theory, describing on a subatomic level exactly how the spinning electrons interact with each other.

1. Okamoto, Y., Nohara, M., Aruga-Katori, H. & Takagi, H. Spin-liquid state in the S = 1/2 hyperkagome antiferromagnet Na4Ir3O8. Physical Review Letters 99, 137207 (2007).

Saeko Okada | ResearchSEA
Further information:
http://www.riken.jp
http://www.researchsea.com

More articles from Materials Sciences:

nachricht Materials scientist creates fabric alternative to batteries for wearable devices
12.11.2018 | University of Massachusetts at Amherst

nachricht A new path through the looking-glass
12.11.2018 | Deutsches Elektronen-Synchrotron DESY

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

The dawn of a new era for genebanks - molecular characterisation of an entire genebank collection

13.11.2018 | Life Sciences

Fish recognize their prey by electric colors

13.11.2018 | Life Sciences

Ultrasound Connects

13.11.2018 | Awards Funding

VideoLinks
Science & Research
Overview of more VideoLinks >>>