Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Printing Multi Materials and Graded Structures Now Possible

17.12.2007
The new additive production system, based on High Viscosity Inkjet Printing, is being developed by TNO in The Netherlands under the auspices of the Custom-Fit project. It has several print heads that produce continuous streams of material droplets at high frequency.

Dr. Michiel Willemse is leading the team developing the inkjet printing machine at TNO. He says, “The process is unique in its capability to print highly viscous, UV curable, resins. Material formulations with viscosities up to 500 mPa•s (at ambient temperature) have been printed successfully. This offers the opportunity to print products with unequalled mechanical properties when compared to any other printing systems.”

The High Viscosity Inkjet Printing machine is also capable of printing multi-materials simultaneously. Currently, most additive manufacturing machines are only capable of printing one type of material. Not only is the TNO inkjet process capable of printing multi material, it also enables the mixing and grading of materials in any combination that is desired. This will enable the manufacturing of products with two or more materials that are graded and there will be no distinct boundary between the materials. This will result in products with unique mechanical properties. To enable the modelling of products with multi-material and graded structures, TNO has developed a CAD modeller known as Innerspace. InnerSpace enables a designer to define material property distributions and also the distribution profile. The software uses the STL file as the source file and the STL model defines the outer boundary of the object. It can define the material distribution for a whole object or just part of the object at any location. The data files from InnerSpace are very small and thus easy to transfer.

Within Custom Fit, the system is designed and used to print bio-compatible materials; the next step for the project would be to print scaffolds for implants using bio-resorbable materials, with varying porosity and graded inclusion of e.g. growth enhancers and anti-biotics. Dr. Willemse says, “The big challenge is the further development of the concept of printing bio-resorbable implants. Improvement of the machine is a minor effort compared to approval of the medical procedure for modelling a graded implant, printing and sterilising it, and implanting it into a human patient. Given the level of innovation in both technology, material and medical procedures, acquiring the approval from relevant authority such as FDA (Food and Drug Administration) will require a much bigger effort.”

Sunny - Luisa Martínez - Marín | alfa
Further information:
http://www.custom-fit.org

More articles from Materials Sciences:

nachricht Machine learning methods provide new insights into organic-inorganic interfaces
04.08.2020 | Technische Universität Graz

nachricht Unusual electron sharing found in cool crystal
31.07.2020 | Nagoya University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AI & single-cell genomics

New software predicts cell fate

Traditional single-cell sequencing methods help to reveal insights about cellular differences and functions - but they do this with static snapshots only...

Im Focus: TU Graz Researchers synthesize nanoparticles tailored for special applications

“Core-shell” clusters pave the way for new efficient nanomaterials that make catalysts, magnetic and laser sensors or measuring devices for detecting electromagnetic radiation more efficient.

Whether in innovative high-tech materials, more powerful computer chips, pharmaceuticals or in the field of renewable energies, nanoparticles – smallest...

Im Focus: Tailored light inspired by nature

An international research team with Prof. Cornelia Denz from the Institute of Applied Physics at the University of Münster develop for the first time light fields using caustics that do not change during propagation. With the new method, the physicists cleverly exploit light structures that can be seen in rainbows or when light is transmitted through drinking glasses.

Modern applications as high resolution microsopy or micro- or nanoscale material processing require customized laser beams that do not change during...

Im Focus: NYUAD astrophysicist investigates the possibility of life below the surface of Mars

  • A rover expected to explore below the surface of Mars in 2022 has the potential to provide more insights
  • The findings published in Scientific Reports, Springer Nature suggests the presence of traces of water on Mars, raising the question of the possibility of a life-supporting environment

Although no life has been detected on the Martian surface, a new study from astrophysicist and research scientist at the Center for Space Science at NYU Abu...

Im Focus: Manipulating non-magnetic atoms in a chromium halide enables tuning of magnetic properties

New approach creates synthetic layered magnets with unprecedented level of control over their magnetic properties

The magnetic properties of a chromium halide can be tuned by manipulating the non-magnetic atoms in the material, a team, led by Boston College researchers,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“Conference on Laser Polishing – LaP 2020”: The final touches for surfaces

23.07.2020 | Event News

Conference radar for cybersecurity

21.07.2020 | Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

 
Latest News

First radio detection of an extrasolar planetary system around a main-sequence star

04.08.2020 | Physics and Astronomy

The art of making tiny holes

04.08.2020 | Physics and Astronomy

Early Mars was covered in ice sheets, not flowing rivers

04.08.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>