Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Repairing defects in fiber-reinforced plastics more efficiently

09.01.2017

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools and repair process, and the automation possibilities. By using laser scarfing and subsequent patch repair, FRP pieces can be repaired with appropriate fiber orientation.


Stepwise and continuous scarfing as a preparation for repair.

LZH

The damaged material is ablated layer-by-layer either in a continuous or in a stepwise way. A precisely fitting replacement, a so called patch, is used to close the defective area. Afterwards, resin can be used to infiltrate and consolidate the new fiber layers. Thus, the repaired area become very strong.

Optical system for the detection of fiber layer orientation

The challenge in laser scarfing is a precise, non-residual removal of the damaged fiber layers. This is made more difficult by the varying thickness of the composite layers, which can be of a global, i.e. in the whole workpiece, or local, i.e. locally restricted, nature. An optical system for recognizing the fiber orientation of the exposed material is supposed provide a solution.

An existing system technology from the Apodius GmbH, which is already used for the manufacturing of dry, semi-finished fiber products, is used as technical basis. Currently, these fiber orientation measuring devices are being further developed, allowing to detect varying layer thicknesses in workpieces made of fiber-reinforced materials with a plastic matrix.

Real-time evaluation enables control of the laser process

In combination with the scanner-based laser scarfing process from the LZH, the new fiber orientation measuring unit achieves a higher geometrical resolution than that of mechanical ablation processes. “Due to the speed of the image recognition process, the measurement data can be evaluated in real-time. Thus, the prerequisite for controlling the scarfing process can be fulfilled, and the goal of automating the process is much closer,” explains Dr. Peter Jäschke, Head of the Composite Group at the LZH. A further advantage of laser processing, as compared to conventional processing, is that the laser is force-, contact- and wear-free.

Durable components for a better eco-balance

The goal of the project partners LZH and the Apodius GmbH is to repair defects in FRP workpieces more cost-efficiently. Thus, the replacement of parts can often be avoided. “For the manufacturers, this means saving time and costs. And the longer the lifetime of a component, the better the ecological balance and the resource-efficiency is,” says Dr. Dietmar Kracht, Executive Director of the LZH.

The project „Optical measurement of the fiber layer orientation for controlling a precise, laser-based FRP repair“ (ForLase) is funded by the German Federal Ministry for Economic Affairs and Energy (BMWi) within the framework of the Central Innovation Program SME (ZIM) for a duration of two years.

Melanie Gauch | Laser Zentrum Hannover e.V.
Further information:
http://www.lzh.de/

More articles from Materials Sciences:

nachricht Research finds new molecular structures in boron-based nanoclusters
13.07.2018 | Brown University

nachricht 3D-Printing: Support structures to prevent vibrations in post-processing of thin-walled parts
12.07.2018 | Fraunhofer-Institut für Produktionstechnologie IPT

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Research finds new molecular structures in boron-based nanoclusters

13.07.2018 | Materials Sciences

Algae Have Land Genes

13.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>