Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Quantum material is promising 'ion conductor' for research, new technologies

17.08.2018

Researchers have shown how to shuttle lithium ions back and forth into the crystal structure of a quantum material, representing a new avenue for research and potential applications in batteries, "smart windows" and brain-inspired computers containing artificial synapses.

The research centers on a material called samarium nickelate, which is a quantum material, meaning its performance taps into quantum mechanical interactions. Samarium nickelate is in a class of quantum materials called strongly correlated electron systems, which have exotic electronic and magnetic properties.


This graphic depicts new research in which lithium ions are inserted into the crystal structure of a quantum material called samarium nickelate, suggesting a new avenue for research and potential applications in batteries, 'smart windows' and brain-inspired computers containing artificial synapses.

Credit: Purdue University image/Yifei Sun

The researchers "doped" the material with lithium ions, meaning the ions were added to the material's crystal structure.

The addition of lithium ions causes the crystal to expand and increases the material's conduction of the ions. The researchers also learned that the effect works with other types of ions, particularly sodium ions, pointing to potential applications in energy storage.

Findings are detailed in a paper appearing this week in Proceedings of the National Academy of Sciences.

"The results highlight the potential of quantum materials and emergent physics in the design of ion conductors," said Shriram Ramanathan, a Purdue University professor of materials engineering who is leading the research.

"There is a lot of research now going on to identify solid-state ion conductors for building batteries, for example. We showed that this general family of materials can hold these ions, so we established some general principles for the design of these sorts of solid-state ion conductors. We showed that ions like lithium and sodium can move through this solid material, and this opens up new directions for research."

Applying a voltage caused the ions to occupy spaces between atoms in the crystal lattice of the material. The effect could represent a more efficient method to store and conduct electricity. Such an effect could lead to new types of batteries and artificial synapses in "neuromorphic," or brain-inspired, computers. Moreover, the ions remained in place after the current was turned off, a "non-volatile" behavior that might be harnessed for computer memory.

Adding lithium ions to the crystal structure also changes the material's optical properties, suggesting potential applications as coatings for "smart windows" whose light transmission properties are altered when voltage is applied.

The research paper's lead authors are Purdue materials engineering postdoctoral research associate Yifei Sun and Michele Kotiuga, a postdoctoral fellow in the Department of Physics and Astronomy at Rutgers University. The work was performed by researchers at several research institutions. A complete listing of co-authors is available in the abstract. To develop the doping process, materials engineers collaborated with Vilas Pol, a Purdue associate professor of chemical engineering and materials engineering, and Purdue graduate student Dawgen Lim.

The research findings demonstrated behavior related to the "Mott transition," a quantum mechanical effect describing how the addition of electrons can change the conducting behavior of a material.

"As we add more electrons to the system the material becomes less and less conducting, which makes it a very interesting system to study, and this effect can only be explained through quantum mechanics," Ramanathan said.

Kotiuga's contribution to the work was to study the electronic properties of lithium-doped samarium nickelate as well as the changes to the crystal structure after doping.

"My calculations show that undoped samarium nickelate is a narrow-gapped semiconductor, meaning that even though it is not metallic, electrons can be excited into a conducting state without too much trouble," she said. "As lithium is added to samarium nickelate the lithium ion will bind to an oxygen and an electron localizes on a nearby nickel-oxygen octahedron, and when an electron has localized on every nickel-oxygen octahedron the material is converted into an insulator. This is a rather counterintuitive result: the added electrons to the system make the material more insulating."

The material's crystal structure was characterized using a synchrotron-radiation light source research facility at Argonne National Laboratory.

The researchers had been working on the paper for about two years and plan to further explore the material's quantum behavior and potential applications in brain-inspired computing.

###

The research was funded or otherwise supported by several sources, including the National Science Foundation, U.S. Department of Energy, the Canadian Light Source, U.S. Army Research Office, U.S. Air Force Office of Scientific Research and the U.S. Office of Naval Research.

Media Contact

Kayla Wiles
wiles5@purdue.edu
765-494-2432

 @PurdueUnivNews

http://www.purdue.edu/ 

Kayla Wiles | EurekAlert!
Further information:
https://www.purdue.edu/newsroom/releases/2018/Q3/quantum-material-is-promising-ion-conductor-for-research,-new-technologies.html

More articles from Materials Sciences:

nachricht A robot and software make it easier to create advanced materials
06.12.2019 | Rutgers University

nachricht First field measurements of laughing gas isotopes
05.12.2019 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing a digital twin

University of Texas and MIT researchers create virtual UAVs that can predict vehicle health, enable autonomous decision-making

In the not too distant future, we can expect to see our skies filled with unmanned aerial vehicles (UAVs) delivering packages, maybe even people, from location...

Im Focus: The coldest reaction

With ultracold chemistry, researchers get a first look at exactly what happens during a chemical reaction

The coldest chemical reaction in the known universe took place in what appears to be a chaotic mess of lasers. The appearance deceives: Deep within that...

Im Focus: How do scars form? Fascia function as a repository of mobile scar tissue

Abnormal scarring is a serious threat resulting in non-healing chronic wounds or fibrosis. Scars form when fibroblasts, a type of cell of connective tissue, reach wounded skin and deposit plugs of extracellular matrix. Until today, the question about the exact anatomical origin of these fibroblasts has not been answered. In order to find potential ways of influencing the scarring process, the team of Dr. Yuval Rinkevich, Group Leader for Regenerative Biology at the Institute of Lung Biology and Disease at Helmholtz Zentrum München, aimed to finally find an answer. As it was already known that all scars derive from a fibroblast lineage expressing the Engrailed-1 gene - a lineage not only present in skin, but also in fascia - the researchers intentionally tried to understand whether or not fascia might be the origin of fibroblasts.

Fibroblasts kit - ready to heal wounds

Im Focus: McMaster researcher warns plastic pollution in Great Lakes growing concern to ecosystem

Research from a leading international expert on the health of the Great Lakes suggests that the growing intensity and scale of pollution from plastics poses serious risks to human health and will continue to have profound consequences on the ecosystem.

In an article published this month in the Journal of Waste Resources and Recycling, Gail Krantzberg, a professor in the Booth School of Engineering Practice...

Im Focus: Machine learning microscope adapts lighting to improve diagnosis

Prototype microscope teaches itself the best illumination settings for diagnosing malaria

Engineers at Duke University have developed a microscope that adapts its lighting angles, colors and patterns while teaching itself the optimal...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

Solving the mystery of carbon on ocean floor

06.12.2019 | Earth Sciences

Chip-based optical sensor detects cancer biomarker in urine

06.12.2019 | Life Sciences

A platform for stable quantum computing, a playground for exotic physics

06.12.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>