Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Quality products from rubber residues

06.11.2012
Rubber residues can be downcycled to floor coverings and safety crashpads, and for the first time, also processed into high-quality plastics. A new kind of material makes it possible: the environmentally-friendly material mix is called EPMT.

Each year throughout the world, up to 22 million tons of rubber are processed and a large portion of it goes into the production of vehicle tires. Once the products reach the end of their useful life, they typically land in the incinerator. In the best case, the waste rubber is recycled into secondary products.


Elastomeric powders can be used in a variety of ways in high-quality materials.
© Fraunhofer UMSICHT

Ground to powder, the rubber residues can be found, for example, in the floor coverings used at sports arenas and playgrounds, and in doormats. But until now, the appropriate techniques for producing high-quality materials from these recyclables did not exist. Researchers at the Fraunhofer Institute for Environmental, Safety and Energy Technology UMSICHT in Oberhausen recently succeeded in optimizing the recycling of rubber waste materials. They have developed a material that can be processed into high-quality products, like wheel and splashguard covers, handles, knobs and steerable castors.

The new plastic compounds are called elastomer powder modified thermoplastics or EPMT for short. They are comprised of rubber residues crushed into elastomer powder that are blended with thermoplastics. “In the first step, the rubber residues – that can be meter-long rubber pieces are granulated to three-millimeter large particles. The particles are cooled with liquid nitrogen and then ground into elastomeric powders. This is then conducted to the melt-mix process with thermoplastics and additives. Here we use, for example, polypropylene as a thermoplastic material,” as Dr. Holger Wack, scientist at UMSICHT, explains the production process. Working jointly with his colleagues Damian Hintemann and Nina Kloster, the trio collaborates on the “EXIST Research Transfer” project sponsored by the Federal Ministry for Economics and Technology BMWi, where they work meticulously on various recipes for new blends of materials that are already protected by patent and trademark rights.

Variable material properties

The compound stands out from a number of different perspectives: The crushing of rubber waste is more environmentally-friendly and resource-efficient than producing new rubber products – an important aspect in view of the rising costs of energy and raw materials. “EPMT may contain up to 80 percent residual rubber; only 20 percent is made up by the thermoplastics,” says Wack. EPMT can be easily processed in injection molding and extrusion machines, and in turn, these products are themselves recyclable. The clou: The physical and mechanical material properties of the substance – like elasticity, breaking strain and hardness – can be individually modified, according to the customer’s wishes.

Altogether, three basic recipes have been developed that collectively can be processed on the large technical production machines. The researchers are capable of producing 100 to 350 kilograms of EPMT per hour. Spurred on by this success, Wack and both of his colleagues founded Ruhr Compounds GmbH. In addition to the production and the sale of EPMT materials, this Fraunhofer spin-off offers custom-made service packages: “We determine which of the customer’s materials can be replaced by EPMT, develop customized recipes and also take into account the settings required at our customers‘ industrial facilities,” says the scientist.

The widest array of industries will benefit from the expertise of these professionals: processors of thermoplastic elastomers can obtain EPMT and further process it into products. Industrial companies whose work involves elastomers – such as the industrial and construction sectors, or car-makers and athletics – could recycle these products, make EPMT from them, incorporate them into their existing products and thereby close the materials cycle.

Nike tests EPMT

In the “Re-use a Shoe” project, sports gear maker Nike has been collecting used sneakers for a while now, recycled their soles and under the label “Nike Grind”, reprocessed them as filler material for sports arenas and running track surfaces. The EPMT compound of the Fraunhofer researchers enables Nike to place new products on the market. As one of its official promotional partners, “Tim Green Gifts” created the first EPMT-based promotional articles under the “Nike Grind” brand, like frisbees, shoehorns and boomerangs. Discussions about using new EPMT compounds in the original portfolio, such as zippers, bag bases and sports equipment, have also been initiated. “We are extremely excited about this collaboration,” says Wack.

Dr. rer. nat. Holger Wack | EurekAlert!
Further information:
http://www.fraunhofer.de/en/press/research-news/2012/november/quality-products-from-rubber-residues.html

More articles from Materials Sciences:

nachricht Epoxy compound gets a graphene bump
14.11.2018 | Rice University

nachricht Automated adhesive film placement and stringer integration for aircraft manufacture
15.11.2018 | Fraunhofer IFAM

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>