Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First proof of single atomic layer material with zero resistance

28.11.2011
A research group at the NIMS International Center for Materials Nanoarchitectonics (MANA) has proved that the electrical resistance of a metal single atomic layer on a silicon surface becomes zero by superconductivity.

A research group led by Dr. Takashi Uchihashi, a MANA Scientist, and Dr. Tomonobu Nakayama, a MANA Principal Investigator, both of the International Center for Materials Nanoarchitectonics (MANA; Director-General: Masakazu Aono), National Institute for Materials Science (President: Sukekatsu Ushioda), demonstrated that a substance comprising a metal single atomic layer on a silicon surface becomes free of electrical resistance by superconductivity.

The current mainstream integrated circuits using semiconductor devices generate excessive heat during operation, and this is a serious problem from the viewpoints of energy saving and environmental protection. Logic elements using superconductors have attracted attention as an effective candidate which offers a fundamental solution to this problem. On the other hand, research on quantum information communication using single photon detectors employing superconducting devices is also progressing as a means of communication which assures perfect information security. As issues for future practical application, it is necessary to realize high integration and high efficiency, etc. in these respective devices. Refinement and creation of thin films of superconducting materials are considered effective for this purpose.

Focusing on an indium single atomic layer arranged with a special structure on a silicon surface, the team led by Dr. Uchihashi observed for the first time in the world that the electrical resistance of this substance become zero, and the substance displays superconductivity, when cooled to a low temperature. Furthermore, when the current passing through this substance was increased, it was possible to pass a large current of 6.1ã109 A/m2 (current density) at maximum. Based on the principle of superconductivity, it had been anticipated that a superconducting current (=current with zero resistance) would be difficult to pass through the extremely confined and disordered region at the surface of a solid. However, this research overturned that prospect.

This research clarified the fact that the thickness of superconducting materials can be reduced to the ultimate limit of the atomic level. It is considered that this achievement will accelerate research on further refinement/integration of superconducting logic elements and research on higher efficiency/higher speed in superconducting detectors.

These research results are scheduled for publication in the near future as an Editorfs Suggestion in the journal of the American Institute of Physics, Physical Review Letters.

Mikiko Tanifuji | Research asia research news
Further information:
http://www.nims.go.jp/eng/index.html
http://www.researchsea.com

More articles from Materials Sciences:

nachricht Synthesis of helical ladder polymers
21.05.2019 | Kanazawa University

nachricht Ultra-thin superlattices from gold nanoparticles for nanophotonics
21.05.2019 | Heinrich-Heine University Duesseldorf

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

Im Focus: A step towards probabilistic computing

Working group led by physicist Professor Ulrich Nowak at the University of Konstanz, in collaboration with a team of physicists from Johannes Gutenberg University Mainz, demonstrates how skyrmions can be used for the computer concepts of the future

When it comes to performing a calculation destined to arrive at an exact result, humans are hopelessly inferior to the computer. In other areas, humans are...

Im Focus: Recording embryonic development

Scientists develop a molecular recording tool that enables in vivo lineage tracing of embryonic cells

The beginning of new life starts with a fascinating process: A single cell gives rise to progenitor cells that eventually differentiate into the three germ...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Summit charts a course to uncover the origins of genetic diseases

22.05.2019 | Life Sciences

New study finds distinct microbes living next to corals

22.05.2019 | Life Sciences

Stellar waltz with dramatic ending

22.05.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>