Project for the Research of Highly Rugged and Lightweight Liquid Crystal Displays

Flexbible monochrome e-paper display from Plastic Logic. Picture: Plastic Logic <br>

Displays for smartphones or tablet-PCs should be highly ruggedized at little overall weight. For curved displays, that might play a role in advertising or the automotive sector, a certain flexibility of the display materials is mandatory.

Together with national and international industry partners, scientists at the University of Stuttgart have started the development of very robust and extremely lightweight displays within the research project LiCRA. Instead of common glass substrates these displays are based on plastic foils what makes them flexible. The overall market for rugged displays is estimated to a total of seven billion (milliard) US$ until 2015 .

Partners of the LiCRA consortium other than the Institute of Large Area Microelectronics of the University of Stuttgart are the British company plastic logic, the Israelian company Etkes and sons, the south German company LOFO High Tech Film GmbH from Weilheim am Rhein, micro resist technology GmbH from Berlin and as an associated partner the pharmaceutical, chemical and life-science-company Merck KGaA from Darmstadt. The project is scheduled for 30 month and is funded with a total of 1.5 million Euros by the German federal ministry of science and education and the national funding agencies of the international partners, respectively.

Together with Plastic Logic, scientists of the University of Stuttgart will develop a process flow for the assembly of liquid crystal cells on plastic. For this purpose Plastic Logic will advance and adapt its organic thin film transistor (OTFT) technology, which has been used for monochrome e-paper displays so far. The actual mounting process for the liquid crystal cells will be developed at the University of Stuttgart. Challenges for these developments are in particular the necessity to work in the low temperature regime as well as the flexibility of the substrates.

In addition, the University of Stuttgart investigates the production of organic light emitting diodes (OLEDs) with polarized light emission. Such OLEDs would be advantageous in that way that an additional backlight and one of the two polarizer sheets, which so far are necessary for liquid crystal cells, could be omitted.

Etkes and sons will develop a back light unit (BLU), which fulfils the requirements of a rugged and lightweight display.

micro resist technology GmbH will develop materials and processes for nano imprint lithography. While the production if microelectronic structures with classic lithography means exposure of a photo resist with UV light and subsequent development of the resist, in nano imprint lithography the desired structures are directly transferred to an adequate nano imprint resist by the use of a mould. Within the LiCRA project, the use of this technology, which promises not only reduces production cost but also increased display resolution, will be investigated in the process chain of OTFTs on plastic substrates.

LOFO High Tech Film will develop the plastic films required for the realization of the liquid crystal displays. Special attention will be paid on low deformation during the successive production of the liquid crystal displays as well as minimized optical birefringence as both would degrade the optical performance of the displays. The solvent casting process used by LOFO is especially suitable for this purpose because the polymer solution can be filtered extremely fine, the films are barely stretched and are thus almost strainless.

Further information:
Prof. Dr. Norbert Frühauf, Universität Stuttgart, Institut für Großflächige Mikroelektronik, Tel. 0711/685-66922, E-Mail: igm (at) igm.uni-stuttgart.de
Andrea Mayer-Grenu, Universität Stuttgart, Abt. Hochschulkommunikation, Tel. 0711/685-82176,

E-Mail: andrea.mayer-grenu (at) hkom.uni-stuttgart.de

Media Contact

Andrea Mayer-Grenu idw

More Information:

http://www.uni-stuttgart.de

All latest news from the category: Materials Sciences

Materials management deals with the research, development, manufacturing and processing of raw and industrial materials. Key aspects here are biological and medical issues, which play an increasingly important role in this field.

innovations-report offers in-depth articles related to the development and application of materials and the structure and properties of new materials.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors