Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Process Could Transform Manufacture of Complex Parts

22.05.2012
A Georgia Tech research team has developed a novel technology that could change how industry designs and casts complex, costly metal parts. This new casting method makes possible faster prototype development times, as well as more efficient and cost-effective manufacturing procedures after a part moves to mass production.

Suman Das, a professor in the George W. Woodruff School of Mechanical Engineering, has developed an all-digital approach that allows a part to be made directly from its computer-aided design (CAD). The project, sponsored by the Defense Advanced Research Projects Agency (DARPA), has received $4.65 million in funding.

“We have developed a proof-of-concept system which is already turning out complex metal parts, and which fundamentally transforms the way that very high-value castings are made,” said Das, who directs the Direct Digital Manufacturing Laboratory in Georgia Tech’s Manufacturing Research Center (MaRC). “We're confident that our approach can lower costs by at least 25 percent and reduce the number of unusable waste parts by more than 90 percent, while eliminating 100 percent of the tooling.”

The approach being utilized by Das and his team focuses on a technique called investment casting, also known as lost-wax casting. In this process, which dates back thousands of years, molten metal is poured into an expendable ceramic mold to form a part.

The mold is made by creating a wax replica of the part to be cast, surrounding or "investing" the replica with a ceramic slurry, and then drying the slurry and hardening it to form the mold. The wax is then melted out – or lost – to form a mold cavity into which metal can be poured and solidified to produce the casting.

Investment casting is used to create precision parts across diverse industries including aerospace, energy, biomedical and electronics. Das’s current efforts are focused on parts used in aircraft engines. He is working with turbine-engine airfoils – complex parts used in jet engines – in collaboration with the University of Michigan and PCC Airfoils.

Today, Das explained, most precision metal castings are designed on computers, using computer-aided design software. But the next step – creating the ceramic mold with which the part is cast – currently involves a sequence of six major operations requiring expensive precision-machined dies and hundreds of tooling pieces.

"The result is a costly process that typically produces many defective molds and waste parts before a useable prototype is achieved," Das said. "This trial-and-error development phase often requires many months to cast a part that is accurate enough to enter the next stage, which involves testing and evaluation."

By contrast, Das’s approach involves a device that builds ceramic molds directly from a CAD design, completing the task much faster and producing far fewer unusable parts. Called Large Area Maskless Photopolymerization (LAMP), this high-resolution digital process accretes the mold layer by layer by projecting bitmaps of ultraviolet light onto a mixture of photosensitive resin and ceramic particles, and then selectively curing the mixture to a solid.

The technique places one 100-micron layer on top of another until the structure is complete. After the mold is formed, the cured resin is removed through binder burnout and the remaining ceramic is sintered in a furnace. The result is a fully ceramic structure into which molten metal – such as nickel-based superalloys or titanium-based alloys – are poured, producing a highly accurate casting.

“The LAMP process lowers the time required to turn a CAD design into a test-worthy part from a year to about a week,” Das said. “We eliminate the scrap and the tooling, and each digitally manufactured mold is identical to the others.”

A prototype LAMP alpha machine is currently building six typical turbine-engine airfoil molds in six hours. Das predicts that a larger beta machine – currently being built at Georgia Tech and scheduled for installation at a PCC Airfoils facility in Ohio in 2012 – will produce 100 molds at a time in about 24 hours.

Although the current work focuses on turbine-engine airfoils, Das believes the LAMP technique will be effective in the production of many types of intricate metal parts. He envisions a scenario in which companies could send out part designs to digital foundries and receive test castings within a short time, much as integrated-circuit designers send CAD plans to chip foundries today.

Moreover, he said, direct digital manufacturing enabled by LAMP should allow designers to create increasingly sophisticated pieces capable of achieving greater efficiency in jet engines and other systems.

“This process can produce parts of a complexity that designers could only dream of before,” he said. “The digital technique takes advantage of high-resolution optics and precision motion systems to achieve extremely sharp, small features – on the order of 100 microns.”

Das also noted that the new process not only creates testable prototypes but could also be used in the actual manufacturing process. That would allow more rapid production of complex metal parts, in both low and high volumes, at lower costs in a variety of industries.

“When you can produce desired volumes in a short period without tooling,” he said, “you have gone beyond rapid prototyping to true rapid manufacturing.”

The project depicted in this article is sponsored by the Defense Advanced Research Projects Agency; the content of this article does not necessarily reflect the position or the policy of the government, and no official endorsement should be inferred.

Research News & Publications Office
Georgia Institute of Technology
75 Fifth Street, N.W., Suite 314
Atlanta, Georgia 30308 USA
Media Relations Contacts: John Toon (404-894-6986)(jtoon@gatech.edu) or Abby Robinson (404-385-3364)(abby@innovate.gatech.edu).

Writer: Rick Robinson

John Toon | Newswise Science News
Further information:
http://www.gatech.edu

More articles from Materials Sciences:

nachricht Carbon fiber can store energy in the body of a vehicle
18.10.2018 | Chalmers University of Technology

nachricht Goodbye, silicon? On the way to new electronic materials with metal-organic networks
17.10.2018 | Max-Planck-Institut für Polymerforschung

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Im Focus: Storage & Transport of highly volatile Gases made safer & cheaper by the use of “Kinetic Trapping"

Augsburg chemists present a new technology for compressing, storing and transporting highly volatile gases in porous frameworks/New prospects for gas-powered vehicles

Storage of highly volatile gases has always been a major technological challenge, not least for use in the automotive sector, for, for example, methane or...

Im Focus: Disrupting crystalline order to restore superfluidity

When we put water in a freezer, water molecules crystallize and form ice. This change from one phase of matter to another is called a phase transition. While this transition, and countless others that occur in nature, typically takes place at the same fixed conditions, such as the freezing point, one can ask how it can be influenced in a controlled way.

We are all familiar with such control of the freezing transition, as it is an essential ingredient in the art of making a sorbet or a slushy. To make a cold...

Im Focus: Micro energy harvesters for the Internet of Things

Fraunhofer IWS Dresden scientists print electronic layers with polymer ink

Thin organic layers provide machines and equipment with new functions. They enable, for example, tiny energy recuperators. In future, these will be installed...

Im Focus: Dynamik einzelner Proteine

Neue Messmethode erlaubt es Forschenden, die Bewegung von Molekülen lange und genau zu verfolgen

Das Zusammenspiel aus Struktur und Dynamik bestimmt die Funktion von Proteinen, den molekularen Werkzeugen der Zelle. Durch Fortschritte in der...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Conference to pave the way for new therapies

17.10.2018 | Event News

Berlin5GWeek: Private industrial networks and temporary 5G connectivity islands

16.10.2018 | Event News

5th International Conference on Cellular Materials (CellMAT), Scientific Programme online

02.10.2018 | Event News

 
Latest News

Nanocages in the lab and in the computer: how DNA-based dendrimers transport nanoparticles

19.10.2018 | Life Sciences

Thin films from Braunschweig on the way to Mercury

19.10.2018 | Physics and Astronomy

App-App-Hooray! - Innovative Kits for AR Applications

19.10.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>