Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Process makes polymers truly plastic

16.03.2012
Just as a chameleon changes its color to blend in with its environment, Duke University engineers have demonstrated for the first time that they can alter the texture of plastics on demand, for example, switching back and forth between a rough surface and a smooth one.

By applying specific voltages, the team has also shown that it can achieve this control over large and curved surface areas.


This image shows various stages of polymer changes. Credit: Xuanhe Zhao

"By changing the voltage applied to the polymer, we can alter the surface from bumpy to smooth and back again," said Xuanhe Zhao, assistant professor of mechanical engineering and materials science at Duke's Pratt School of Engineering. "There are many instances, for example, when you'd want to be able to change at will a surface from one that is rough to slippery and back again."

Scientists have long been able to create different patterns or textures on plastics through a process known as electrostatic lithography, in which patterns are "etched" onto a surface from an electrode located above the polymer. However, once the patterns have been created by this method, they are set permanently.

"We invented a method which is capable of dynamically generating a rich variety of patterns with various shapes and sizes on large areas of soft plastics or polymers," Zhao said. The results were published online in the journal Advanced Materials.

"This new approach can dynamically switch polymer surfaces among various patterns ranging from dots, segments, lines to circles," said Qiming Wang, a student in Zhao's laboratory and the first author of the paper. "The switching is also very fast, within milliseconds, and the pattern sizes can be tuned from millimeter to sub-micrometer."

The findings follow Zhao's earlier studies, which for the first time captured on videotape how polymers react to changing voltages. Those experiments showed that as the voltage increases, polymers tend to start creasing, finally leading to large craters. This explained in physical terms, for example, why polymers used to insulate electric wires tend to fail over time. The new lithography strategy takes useful insights from this failure mechanism.

On a more fanciful note, Zhao described the possibility of creating rubber gloves whose fingerprints could be changed on demand.

"The changeable patterns we have created in the laboratory include circles and straight and curved lines, which are basic elements of fingerprints," Zhao said. "These elements can be dynamically patterned and changed on a glove surface that covers fingertips.

"A spy's glove may be cool, but probably not for everyone," Zhao said. "However, the same technology can produce gloves with on-demand textures and smoothness tuned for various applications, such as climbing and gripping. Furthermore, surfaces capable of dynamically changing patterns are also useful for many technologies, such as microfluidics and camouflage."

Other potential usages of the new method include creating surfaces that are self-cleaning and water-repellant, or even as platforms for controlled-release drug-eluting devices.

The study was supported by the Research Triangle Materials Research Science and Engineering Center, which is funded by the National Science Foundation, as well as the Lord Foundation and a Haythornthwaite Research Initiation grant.

Other members of the research team were Duke's Mukarram Tahir and Jianfeng Zang.

Richard Merritt | EurekAlert!
Further information:
http://www.duke.edu

More articles from Materials Sciences:

nachricht A robot and software make it easier to create advanced materials
05.12.2019 | Rutgers University

nachricht First field measurements of laughing gas isotopes
05.12.2019 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing a digital twin

University of Texas and MIT researchers create virtual UAVs that can predict vehicle health, enable autonomous decision-making

In the not too distant future, we can expect to see our skies filled with unmanned aerial vehicles (UAVs) delivering packages, maybe even people, from location...

Im Focus: The coldest reaction

With ultracold chemistry, researchers get a first look at exactly what happens during a chemical reaction

The coldest chemical reaction in the known universe took place in what appears to be a chaotic mess of lasers. The appearance deceives: Deep within that...

Im Focus: How do scars form? Fascia function as a repository of mobile scar tissue

Abnormal scarring is a serious threat resulting in non-healing chronic wounds or fibrosis. Scars form when fibroblasts, a type of cell of connective tissue, reach wounded skin and deposit plugs of extracellular matrix. Until today, the question about the exact anatomical origin of these fibroblasts has not been answered. In order to find potential ways of influencing the scarring process, the team of Dr. Yuval Rinkevich, Group Leader for Regenerative Biology at the Institute of Lung Biology and Disease at Helmholtz Zentrum München, aimed to finally find an answer. As it was already known that all scars derive from a fibroblast lineage expressing the Engrailed-1 gene - a lineage not only present in skin, but also in fascia - the researchers intentionally tried to understand whether or not fascia might be the origin of fibroblasts.

Fibroblasts kit - ready to heal wounds

Im Focus: McMaster researcher warns plastic pollution in Great Lakes growing concern to ecosystem

Research from a leading international expert on the health of the Great Lakes suggests that the growing intensity and scale of pollution from plastics poses serious risks to human health and will continue to have profound consequences on the ecosystem.

In an article published this month in the Journal of Waste Resources and Recycling, Gail Krantzberg, a professor in the Booth School of Engineering Practice...

Im Focus: Machine learning microscope adapts lighting to improve diagnosis

Prototype microscope teaches itself the best illumination settings for diagnosing malaria

Engineers at Duke University have developed a microscope that adapts its lighting angles, colors and patterns while teaching itself the optimal...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

Lights on fishing nets save turtles and dolphins

06.12.2019 | Ecology, The Environment and Conservation

Machine learning, imaging technique may boost colon cancer diagnosis

06.12.2019 | Life Sciences

'Virtual biopsy' allows doctors to accurately diagnose precancerous pancreatic cysts

06.12.2019 | Medical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>