Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018

An international team of scientists has discovered a new, exotic form of insulating material with a metallic surface that could enable more efficient electronics or even quantum computing. The researchers developed a new method for analyzing existing chemical compounds that relies on the mathematical properties like symmetry that govern the repeating patterns seen in everyday wallpaper.

"The beauty of topology is that one can apply symmetry principles to find and categorize materials," said B. Andrei Bernevig, a professor of physics at Princeton.


A newly identified insulating material using the symmetry principles behind wallpaper patterns may provide a basis for quantum computing, according to an international team of researchers. This strontium-lead sample (Sr2Pb3) has a fourfold Dirac cone surface state, a set of four, two-dimensional electronic surface states that go away from a point in momentum space in straight lines.

Image courtesy of Benjamin Wieder, Princeton University Department of Physics

Usage Restrictions: Editorial use only.

The research, appearing July 20 in the journal Science, involved a collaboration among groups from Princeton University, the University of Pennsylvania (Penn), Sungkyunkwan University, Freie Universität Berlin and the Max Planck Institute of Microstructure Physics.

The discovery of this form of lead-strontium (Sr2Pb3) completes a decade-long search for an elusive three-dimensional material that combines the unique electronic properties of two-dimensional graphene and three-dimensional topological insulators, a phase of matter discovered in 2005 in independent works by Charles Kane at Penn and Bernevig at Princeton.

Some scientists have theorized that topological insulators, which insulate on their interior but conduct electricity on their surface, could serve as a foundation for super-fast quantum computing.

"You can think about a topological insulator like a Hershey's kiss," said Kane, a corresponding author on the paper. "The chocolate is the insulator and the foil is a conductor. We've been trying to identify new classes of materials in which crystal symmetries protect the conducting surface. What we've done here is to identify the simplest kind of topological crystalline insulator."

The new work demonstrates how the symmetries of certain two-dimensional surfaces, known as the 17 wallpaper groups for their wallpaper-like patterning, constrain the spatial arrangement (topology) of three-dimensional insulators.

In a conventional three-dimensional topological insulator, each two-dimensional surface exhibits a single characteristic group of states with cone-like dispersion. These cones resemble the elements on graphene called Dirac cones, features that imbue the material and other two-dimensional Dirac semimetals with their unusual electronic transport qualities, but they are distinct because graphene possesses a total of four Dirac cones in two pairs that are "glued" together.

Kane had suspected that with crystal symmetries, a second kind of topological insulator could exist with a single pair of glued Dirac cones. "What I realized was that a single pair of Dirac cones is impossible in a purely two-dimensional material, but it might be possible at the surface of a new kind of topological insulator. But when I tried to construct such a state, the two cones always came unglued."

A solution emerged when Benjamin Wieder, then a graduate student in Kane's group and now a Princeton postdoctoral associate, visited Princeton. At Princeton, Bernevig and colleague Zhi Jun Wang had just discovered "hourglass insulators" -- topological insulators with strange patterns of interlocking hourglass-like states -- which Wieder recognized as acting as if you had wrapped a three-dimensional crystal with a special kind of patterned wallpaper.

"We realized that you could get not just the hourglass insulator, but also this special Dirac insulator, by finding a crystal that looked like it was covered in the right wallpaper," said Wieder.

In particular, they recognized that a glued pair of Dirac cones could be stabilized on crystal surfaces that have two intersecting lines along which the surfaces look identical after being flipped and turned perpendicularly. These lines, known as glide reflections, characterize the so-called nonsymmorphic wallpaper groups, and thus provide the namesake of this new phase, which the team dubbed a "nonsymmorphic Dirac insulator."

The researchers quickly went to work applying mathematical rigor to Wieder's inspiration, resulting in a new, wallpaper symmetry-based methodology for diagnosing the bulk topology of three-dimensional crystals.

"The basic principles are simple enough that we sketched them on napkins that very evening," said co-author Barry Bradlyn, an associate research scholar in the Princeton Center for Theoretical Science (PCTS).

"But they are nevertheless robust enough to predict and understand a zoo of new topological phases in real materials," said Wang, a postdoctoral research associate in physics.

The discovery allowed the scientists to directly relate the symmetry of a surface to the presence of desired topological surface states for the first time, said Penn's Andrew Rappe, another co-author on the paper. "This allows an elegant and immediately useful means of designing desirable surface and interface states."

To identify the Dirac insulating phase in nature, the researchers calculated the electronic structures of hundreds of previously synthesized compounds with surfaces with two glide lines (wallpaper groups pgg and p4g) before identifying the novel topology in lead-strontium.

The computational chemists "knew they were searching for a needle in a haystack, but nobody bothered to tell them how small the needle might be," said Jennifer Cano, an associate research scholar at PCTS.

As even more exotic topological insulators are discovered, the role of wallpaper group symmetry, and of the special, graphene-like cones in the Dirac insulator, have been further solidified.

"When you can split a true surface Dirac cone while keeping time-reversal symmetry, something truly special happens," said Bernevig. "You get three-dimensional insulators whose two-dimensional surfaces are also a kind of topological insulator." Such phases have been predicted recently in bismuth crystals and molybdenum ditelluride (MoTe2) by several members of the collaboration.

Furthermore, with the use of a new theory, topological quantum chemistry, the researchers hope to find many more of these exotic phases.

"If we could paint these materials with the right wallpaper, we'd see more Dirac insulators," said Wieder, "but sometimes, the wrong wallpaper is interesting too."

###

"Wallpaper fermions and the nonsymmorphic Dirac insulator" by Benjamin Wieder, Barry Bradlyn, Zhi Jun Wang, Jennifer Cano, Youngkuk Kim; and Hyeong-Seok (Daniel) Kim, Andrew Rappe, Charles Kane and B. Andrei Bernevig appears in the July 20th issue of Science. The research was supported by the Simons Foundation (ONR-N00014-14-1-0330, ARO MURI W911NF-12-1-0461), Nordita, the European Research Council (DM 321031), the U.S. Department of Energy (DE-SC0016239), the National Science Foundation (DMR-1643312, NSF-MRSEC DMR-1420541 and DMR-1120901), the Packard Foundation, the Schmidt Fund for Innovative Research and the National Natural Science Foundation of China (grant 11504117).

Princeton science writer Liz Fuller-Wright and University of Pennsylvania science writer Katie Baillie contributed to this story.

Media Contact

Liz Fuller-Wright
lizfw@princeton.edu
609-258-5729

 @Princeton

http://www.princeton.edu 

Liz Fuller-Wright | idw - Informationsdienst Wissenschaft

Further reports about: crystals graphene insulators topological insulator topology

More articles from Materials Sciences:

nachricht New opportunities in additive manufacturing presented
14.11.2019 | Fraunhofer IFAM Dresden

nachricht Theoretical tubulanes inspire ultrahard polymers
13.11.2019 | Rice University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New opportunities in additive manufacturing presented

Fraunhofer IFAM Dresden demonstrates manufacturing of copper components

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM in Dresden has succeeded in using Selective Electron Beam Melting (SEBM) to...

Im Focus: New Pitt research finds carbon nanotubes show a love/hate relationship with water

Carbon nanotubes (CNTs) are valuable for a wide variety of applications. Made of graphene sheets rolled into tubes 10,000 times smaller than a human hair, CNTs have an exceptional strength-to-mass ratio and excellent thermal and electrical properties. These features make them ideal for a range of applications, including supercapacitors, interconnects, adhesives, particle trapping and structural color.

New research reveals even more potential for CNTs: as a coating, they can both repel and hold water in place, a useful property for applications like printing,...

Im Focus: Magnets for the second dimension

If you've ever tried to put several really strong, small cube magnets right next to each other on a magnetic board, you'll know that you just can't do it. What happens is that the magnets always arrange themselves in a column sticking out vertically from the magnetic board. Moreover, it's almost impossible to join several rows of these magnets together to form a flat surface. That's because magnets are dipolar. Equal poles repel each other, with the north pole of one magnet always attaching itself to the south pole of another and vice versa. This explains why they form a column with all the magnets aligned the same way.

Now, scientists at ETH Zurich have managed to create magnetic building blocks in the shape of cubes that - for the first time ever - can be joined together to...

Im Focus: A new quantum data classification protocol brings us nearer to a future 'quantum internet'

The algorithm represents a first step in the automated learning of quantum information networks

Quantum-based communication and computation technologies promise unprecedented applications, such as unconditionally secure communications, ultra-precise...

Im Focus: Distorted Atoms

In two experiments performed at the free-electron laser FLASH in Hamburg a cooperation led by physicists from the Heidelberg Max Planck Institute for Nuclear physics (MPIK) demonstrated strongly-driven nonlinear interaction of ultrashort extreme-ultraviolet (XUV) laser pulses with atoms and ions. The powerful excitation of an electron pair in helium was found to compete with the ultrafast decay, which temporarily may even lead to population inversion. Resonant transitions in doubly charged neon ions were shifted in energy, and observed by XUV-XUV pump-probe transient absorption spectroscopy.

An international team led by physicists from the MPIK reports on new results for efficient two-electron excitations in helium driven by strong and ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

Smart lasers open up new applications and are the “tool of choice” in digitalization

30.10.2019 | Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

 
Latest News

New opportunities in additive manufacturing presented

14.11.2019 | Materials Sciences

Massive photons in an artificial magnetic field

14.11.2019 | Physics and Astronomy

Fraunhofer Radio Technology becomes part of the worldwide Telecom Infra Project (TIP)

14.11.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>