Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Power of marine inspiration

14.09.2015

Bioinspired carbon anodes enable high performance in lithium-ion batteries

Scientists at Singapore's Agency for Science, Technology and Research (A*STAR) have drawn on nature for a breakthrough that significantly enhances the electrochemical performance of lithium-ion batteries. The researchers have developed hierarchical porous carbon spheres to be used as anodes after being inspired by the templated formation of unicellular algae or ‘diatoms’ [1].


A transmission electron microscopy image of graphitic carbon spheres with a hierarchical pore structure. Inset: A microscopy image of a marine diatom.

Adapted with permission from Ref 1. Copyright 2015 American Chemical Society.

“In nature, a great number of microorganisms, like diatoms, can assemble biominerals into intricate hierarchical three-dimensional architectures with great structural control over nano- to millimeter length scales,” explains Xu Li, who heads the research team at the A*STAR Institute of Materials Research and Engineering. “These organisms contain organic macromolecules, which can be used as templates to induce and direct the precise precipitation of silica building blocks to form the complex structures.”

This natural phenomenon inspired Li and colleagues to develop biomimetic strategies based on self-assembled molecular templates to produce hierarchical carbon materials for use as anodic components of batteries.

These materials contain mesopores, which form an interconnected network of channels within the carbon spheres, and have a microporous surface (see image). These three-dimensional features promote ion transport and high storage capacity within the carbon spheres.

Li and the team used organic macromolecules, an aggregate of polymers and cobalt-containing molecules, as templates to make the interconnected mesopores — in a similar way that diatoms create their siliceous structure. The carbon scaffold of the spheres is derived from rings of sugar molecules, which thread on to the pendant polymer chains and form ‘soft’ carbon spheres after hydrothermal treatment.

Pyrolysis causes a cobalt species to catalyze the graphitization process, creating the ‘hard’ carbon spheres. If urea is added before pyrolysis, nitrogen-doped graphitic carbon spheres are made. “The carbon spheres can only be prepared on a laboratory scale, however, we are optimizing the synthetic conditions to scale up fabrication,” says Li.

Next, Li and co-workers tested the carbon spheres as anodes in lithium-ion batteries. The batteries showed high reversible capacity, good cycling stability and outstanding high-rate performance.

Even when the current density is increased 600-fold, 57 per cent of the original capacity is retained. The nitrogen-doped carbon spheres have a higher reversible capacity because of more facile transport of ions and electrons within the doped carbon spheres.

“These results are among the best output to date compared with pure carbon materials,” says Li. “We envisage that batteries composed of these anode materials could be charged faster than those fabricated using conventional carbon materials,” he adds.

The next stage of the research is to extend the application of these materials to other energy storage or conversion systems, and other electrochemical applications, such as electrocatalysis.

The A*STAR-affiliated researchers contributing to this research are from the Institute of Materials Research and Engineering.

Reference

[1] Wang, S.-X., Chen, S., Wei, Q., Zhang, X., Wong, S. Y. et al. Bioinspired synthesis of hierarchical porous graphitic carbon spheres with outstanding high-rate performance in lithium-ion batteries. Chemistry of Materials 27, 336−342 (2015).


Associated links
Original article from A*STAR Research

A*STAR Research | ResearchSea
Further information:
http://www.researchsea.com

More articles from Materials Sciences:

nachricht Research finds new molecular structures in boron-based nanoclusters
13.07.2018 | Brown University

nachricht 3D-Printing: Support structures to prevent vibrations in post-processing of thin-walled parts
12.07.2018 | Fraunhofer-Institut für Produktionstechnologie IPT

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>