Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

PolyU scientist develop new textile materials for sportswear

17.10.2011
A novel type of fabric that can absorb water and perspiration on one side and transport it to the other has been invented by a team of textile scientists based at The Hong Kong Polytechnic University (PolyU).

A novel type of fabric that can absorb water and perspiration on one side and transport it to the other has been invented by a team of textile scientists based at The Hong Kong Polytechnic University (PolyU). The finding was published in the latest issue of the Journal of Materials Chemistry (Issue dated 13 October 2011) of the Royal Society of Chemistry.

This ground-breaking research was done by Professor John Xin, Acting Head of PolyU’s Institute of Textile and Clothing; his PhD student Miss Kong Yee-yee; and Dr Liu Yuyang of the Stevens Institute of Technology in the US. The researchers have made the fabric hydrophilic on one side by coating it with nano titania, which gives the material photo-induced hydrophilicity. This means that its hydrophilicity can be controlled by light. The fabric becomes hydrophobic after being stored in the dark.

The fabric could be used to wick sweat away from the human skin. In the light, water can be transported in a controllable manner from the hydrophobic side (next to the skin) to the hydrophilic side and then spread out rapidly along the channels on the hydrophilic side.

This differs from other materials that do a similar thing. Current materials work by creating a surface energy gradient across the fabric by a pressure difference. Professor John Xin’s work introduces nano and smart elements into the system, taking advantage of titania’s properties.

A pioneering researcher, Professor John Xin and is renowned for his nano-technology breakthrough for to develop a special fabric which can be made into self-cleaning clothes. This breakthrough by Professor Xin and Dr Walid Daoud in 2004 was also reported by Nature.

Regina Yu | Research asia research news
Further information:
http://www.polyu.edu.hk
http://www.researchsea.com

More articles from Materials Sciences:

nachricht Scientists create a nanomaterial that is both twisted and untwisted at the same time
16.09.2019 | University of Bath

nachricht New metamaterial morphs into new shapes, taking on new properties
12.09.2019 | California Institute of Technology

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tomorrow´s coolants of choice

Scientists assess the potential of magnetic-cooling materials

Later during this century, around 2060, a paradigm shift in global energy consumption is expected: we will spend more energy for cooling than for heating....

Im Focus: The working of a molecular string phone

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Potsdam (both in Germany) and the University of Toronto (Canada) have pieced together a detailed time-lapse movie revealing all the major steps during the catalytic cycle of an enzyme. Surprisingly, the communication between the protein units is accomplished via a water-network akin to a string telephone. This communication is aligned with a ‘breathing’ motion, that is the expansion and contraction of the protein.

This time-lapse sequence of structures reveals dynamic motions as a fundamental element in the molecular foundations of biology.

Im Focus: Milestones on the Way to the Nuclear Clock

Two research teams have succeeded simultaneously in measuring the long-sought Thorium nuclear transition, which enables extremely precise nuclear clocks. TU Wien (Vienna) is part of both teams.

If you want to build the most accurate clock in the world, you need something that "ticks" very fast and extremely precise. In an atomic clock, electrons are...

Im Focus: Graphene sets the stage for the next generation of THz astronomy detectors

Researchers from Chalmers University of Technology have demonstrated a detector made from graphene that could revolutionize the sensors used in next-generation space telescopes. The findings were recently published in the scientific journal Nature Astronomy.

Beyond superconductors, there are few materials that can fulfill the requirements needed for making ultra-sensitive and fast terahertz (THz) detectors for...

Im Focus: Physicists from Stuttgart prove the existence of a supersolid state of matte

A supersolid is a state of matter that can be described in simplified terms as being solid and liquid at the same time. In recent years, extensive efforts have been devoted to the detection of this exotic quantum matter. A research team led by Tilman Pfau and Tim Langen at the 5th Institute of Physics of the University of Stuttgart has succeeded in proving experimentally that the long-sought supersolid state of matter exists. The researchers report their results in Nature magazine.

In our everyday lives, we are familiar with matter existing in three different states: solid, liquid, or gas. However, if matter is cooled down to extremely...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Society 5.0: putting humans at the heart of digitalisation

10.09.2019 | Event News

Interspeech 2019 conference: Alexa and Siri in Graz

04.09.2019 | Event News

AI for Laser Technology Conference: optimizing the use of lasers with artificial intelligence

29.08.2019 | Event News

 
Latest News

Too much of a good thing: overactive immune cells trigger inflammation

16.09.2019 | Life Sciences

Scientists create a nanomaterial that is both twisted and untwisted at the same time

16.09.2019 | Materials Sciences

Researchers have identified areas of the retina that change in mild Alzheimer's disease

16.09.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>