Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

PolyU scientist develop new textile materials for sportswear

17.10.2011
A novel type of fabric that can absorb water and perspiration on one side and transport it to the other has been invented by a team of textile scientists based at The Hong Kong Polytechnic University (PolyU).

A novel type of fabric that can absorb water and perspiration on one side and transport it to the other has been invented by a team of textile scientists based at The Hong Kong Polytechnic University (PolyU). The finding was published in the latest issue of the Journal of Materials Chemistry (Issue dated 13 October 2011) of the Royal Society of Chemistry.

This ground-breaking research was done by Professor John Xin, Acting Head of PolyU’s Institute of Textile and Clothing; his PhD student Miss Kong Yee-yee; and Dr Liu Yuyang of the Stevens Institute of Technology in the US. The researchers have made the fabric hydrophilic on one side by coating it with nano titania, which gives the material photo-induced hydrophilicity. This means that its hydrophilicity can be controlled by light. The fabric becomes hydrophobic after being stored in the dark.

The fabric could be used to wick sweat away from the human skin. In the light, water can be transported in a controllable manner from the hydrophobic side (next to the skin) to the hydrophilic side and then spread out rapidly along the channels on the hydrophilic side.

This differs from other materials that do a similar thing. Current materials work by creating a surface energy gradient across the fabric by a pressure difference. Professor John Xin’s work introduces nano and smart elements into the system, taking advantage of titania’s properties.

A pioneering researcher, Professor John Xin and is renowned for his nano-technology breakthrough for to develop a special fabric which can be made into self-cleaning clothes. This breakthrough by Professor Xin and Dr Walid Daoud in 2004 was also reported by Nature.

Regina Yu | Research asia research news
Further information:
http://www.polyu.edu.hk
http://www.researchsea.com

More articles from Materials Sciences:

nachricht Theoretical tubulanes inspire ultrahard polymers
14.11.2019 | Rice University

nachricht New spin directions in pyrite an encouraging sign for future spintronics
14.11.2019 | ARC Centre of Excellence in Future Low-Energy Electronics Technologies

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Atoms don't like jumping rope

Nanooptical traps are a promising building block for quantum technologies. Austrian and German scientists have now removed an important obstacle to their practical use. They were able to show that a special form of mechanical vibration heats trapped particles in a very short time and knocks them out of the trap.

By controlling individual atoms, quantum properties can be investigated and made usable for technological applications. For about ten years, physicists have...

Im Focus: Images from NJIT's big bear solar observatory peel away layers of a stellar mystery

An international team of scientists, including three researchers from New Jersey Institute of Technology (NJIT), has shed new light on one of the central mysteries of solar physics: how energy from the Sun is transferred to the star's upper atmosphere, heating it to 1 million degrees Fahrenheit and higher in some regions, temperatures that are vastly hotter than the Sun's surface.

With new images from NJIT's Big Bear Solar Observatory (BBSO), the researchers have revealed in groundbreaking, granular detail what appears to be a likely...

Im Focus: New opportunities in additive manufacturing presented

Fraunhofer IFAM Dresden demonstrates manufacturing of copper components

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM in Dresden has succeeded in using Selective Electron Beam Melting (SEBM) to...

Im Focus: New Pitt research finds carbon nanotubes show a love/hate relationship with water

Carbon nanotubes (CNTs) are valuable for a wide variety of applications. Made of graphene sheets rolled into tubes 10,000 times smaller than a human hair, CNTs have an exceptional strength-to-mass ratio and excellent thermal and electrical properties. These features make them ideal for a range of applications, including supercapacitors, interconnects, adhesives, particle trapping and structural color.

New research reveals even more potential for CNTs: as a coating, they can both repel and hold water in place, a useful property for applications like printing,...

Im Focus: Magnets for the second dimension

If you've ever tried to put several really strong, small cube magnets right next to each other on a magnetic board, you'll know that you just can't do it. What happens is that the magnets always arrange themselves in a column sticking out vertically from the magnetic board. Moreover, it's almost impossible to join several rows of these magnets together to form a flat surface. That's because magnets are dipolar. Equal poles repel each other, with the north pole of one magnet always attaching itself to the south pole of another and vice versa. This explains why they form a column with all the magnets aligned the same way.

Now, scientists at ETH Zurich have managed to create magnetic building blocks in the shape of cubes that - for the first time ever - can be joined together to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

 
Latest News

Structure of a mitochondrial ATP synthase

19.11.2019 | Life Sciences

The measurements of the expansion of the universe don't add up

19.11.2019 | Physics and Astronomy

Ayahuasca compound changes brainwaves to vivid 'waking-dream' state

19.11.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>