Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plumbene, graphene's latest cousin, realized on the 'nano water cube'

23.05.2019

Two-dimensional materials made of Group 14 elements, graphene's cousins, have attracted enormous interest in recent years because of their unique potential as useful topological insulators.

In particular, the up-to-now purely theoretical possibility of a lead-based 2D honeycomb material, called plumbene, has generated much attention because it has the largest spin-orbit interaction, due to lead's orbital electron structure and therefore the largest energy band gap, potentially making it a robust 2D topological insulator in which the Quantum Spin Hall Effect might occur even above room temperature.


Plumbene is realized by annealing an ultrathin lead (Pb) film on palladium Pd(111). The resulting surface material has the signature honeycomb structure of a 2D monolayer, as revealed by scanning tunneling microscopy. Surprisingly, beneath the plumbene, a palladium-lead (Pd-Pb) alloy thin film forms with a bubble structure (Fig. 4 (a)) reminiscent of a Weaire-Phelan structure, which was the inspiration for the design of the Beijing National Aquatics Centre ("Water Cube") of the 2008 Olympics in Beijing.

Credit: Junji Yuhara


The scanning tunneling microscope image shows the tell-tale honeycomb structure of a 2D monatomic layer of lead grown on the palladium(111) substrate.

Credit: Junji Yuhara, Bangjie He, Noriaki Matsunami, Masashi Nakatake and Guy Le Lay

For this reason finding a reliable and cheap method of synthesizing plumbene has been considered to be an important goal of materials science research.

Now, Nagoya University-led researchers have created plumbene by annealing an ultrathin lead (Pb) film on palladium Pd(111). The resulting surface material has the signature honeycomb structure of a 2D monolayer, as revealed by scanning tunneling microscopy.

Surprisingly, beneath the plumbene, a palladium-lead (Pd-Pb) alloy thin film forms with a bubble structure reminiscent of a Weaire-Phelan structure (which partitions space into cells of equal volume with the least total surface area of the walls between them, solving the "Kelvin Problem"). The Weaire-Phelan structure was the inspiration for the design of the Beijing National Aquatics Centre ("Water Cube") of the 2008 Olympics in Beijing.

Group leader Professor Junji Yuhara jokingly recalls that the case of the Beijing Water Cube and the Weaire-Phelan structure is not the first time that architects and materials scientists have inspired each other. "Architect Buckminster Fuller designed the geodesic sphere for the World Expo 1967 in Montreal, and later the Buckminster Fullerene, C60, was named after him."

According to Professor Yuhara, "Both plumbene and the 'nano water cube' are a beautiful addition to the Nano Nature World. The buildings of the 2020 Tokyo Olympics, the 2024 Paris Olympics, Expo 2020 Dubai, Expo 2023 Buenos Aires, Expo 2025 Osaka, and so on may also be placed in the spotlight again as future new materials," he says.

"The advent of plumbene", remarks Professor Yuhara, "has been long awaited, and comes after the creation of silicene in 2012, germanene in 2014 and stanene in 2015. It will certainly launch a rush for applications."

###

"Graphene's Latest Cousin: Plumbene Epitaxial Growth on a 'Nano WaterCube'." This paper recently appeared in Advanced Materials and can be accessed at https://doi.org/10.1002/adma.201901017

Authors: Junji Yuhara, Bangjie He, Noriaki Matsunami, Masashi Nakatake and Guy Le Lay.

John Wojdylo | EurekAlert!
Further information:
http://dx.doi.org/10.1002/adma.201901017

More articles from Materials Sciences:

nachricht A new paradigm of material identification based on graph theory
17.06.2019 | Science China Press

nachricht Electron beam strengthens recyclable nanocomposite
17.06.2019 | Kanazawa University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Im Focus: Tube anemone has the largest animal mitochondrial genome ever sequenced

Discovery by Brazilian and US researchers could change the classification of two species, which appear more akin to jellyfish than was thought.

The tube anemone Isarachnanthus nocturnus is only 15 cm long but has the largest mitochondrial genome of any animal sequenced to date, with 80,923 base pairs....

Im Focus: Tiny light box opens new doors into the nanoworld

Researchers at Chalmers University of Technology, Sweden, have discovered a completely new way of capturing, amplifying and linking light to matter at the nanolevel. Using a tiny box, built from stacked atomically thin material, they have succeeded in creating a type of feedback loop in which light and matter become one. The discovery, which was recently published in Nature Nanotechnology, opens up new possibilities in the world of nanophotonics.

Photonics is concerned with various means of using light. Fibre-optic communication is an example of photonics, as is the technology behind photodetectors and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Uncovering hidden protein structures

18.06.2019 | Life Sciences

Monitoring biodiversity with sound: how machines can enrich our knowledge

18.06.2019 | Life Sciences

Schizophrenia: Adolescence is the game-changer

18.06.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>