Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plasmonic Crystal Alters to Match Light-Frequency Source

04.11.2013
A device like a photonic crystal, but smaller and tunable

Gems are known for the beauty of the light that passes through them. But it is the fixed atomic arrangements of these crystals that determine which light frequencies are permitted passage.

Now a Sandia-led team has created a plasmonic, or plasma-containing, crystal that is tunable. The effect is achieved by adjusting a voltage applied to the plasma, making the crystal agile in transmitting terahertz light at varying frequencies. This could increase the bandwidth of high-speed communication networks and generally enhance high-speed electronics.

“Our experiment is more than a curiosity precisely because our plasma resonances are widely tunable,” says Sandia researcher Greg Dyer, co-primary investigator of a recently published online paper in Nature Photonics, expected to appear in print in that journal in November. “Usually, electromagnetically induced transparencies in more widely known systems like atomic gases, photonic crystals and metamaterials require tuning a laser’s frequencies to match a physical system. Here, we tune our system to match the radiation source. It’s inverting the problem, in a sense.”

The plasmonic crystal method could be used to shrink the size of photonic crystals, which are artificially built to allow transmission of specific wavelengths, and to develop tunable metamaterials, which require micron- or nano-sized bumps to tailor interactions between manmade structures and light. The plasmonic crystal, with its ability to direct light like a photonic crystal, along with its sub-wavelength, metamaterial-like size, in effect hybridizes the two concepts.

The crystal’s electron plasma forms naturally at the interface of semiconductors with different band gaps. It sloshes between their atomically smooth boundaries that, when properly aligned, form a crystal. Patterned metal electrodes allow its properties to be reconfigured, altering its light transmission range. In addition, defects intentionally mixed into the electron fluid allow light to be transmitted where the crystal is normally opaque.

However, this crystal won’t be coveted for the beauty of its light. The crystal transmits in the terahertz spectrum, a frequency range invisible to the human eye. Scientists also must adjust the crystal’s two-dimensional electron gas to electronically vary its output frequencies, something casual crystal buyers probably won’t be able to do.

Following online release, the paper titled, “Induced transparency by coupling of Tamm and defect states in tunable terahertz plasmonic crystals,” is slated to appear in the November print edition of Nature Photonics.

In addition to Dyer, other authors are co-principal investigator Eric Shaner, with Albert D. Grine, Don Bethke and John L. Reno, all from Sandia; Gregory R. Aizin of The City University of New York; and S. James Allen of the Institute for Terahertz Science and Technology at the University of California, Santa Barbara.

The work was supported by the Department of Energy’s Office of Basic Energy Sciences (BES) and performed in part at the Center for Integrated Nanotechnologies (CINT), a Sandia/Los Alamos national laboratories user facility that is is one of the five DOE Nanoscale Science Research Centers.

Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin company, for the U.S. Department of Energy’s National Nuclear Security Administration. With main facilities in Albuquerque, N.M., and Livermore, Calif., Sandia has major R&D responsibilities in national security, energy and environmental technologies and economic competitiveness.

Neal Singer | Newswise
Further information:
http://www.sandia.gov

More articles from Materials Sciences:

nachricht Proteins imaged in graphene liquid cell have higher radiation tolerance
10.12.2018 | INM - Leibniz-Institut für Neue Materialien gGmbH

nachricht High-temperature electronics? That's hot
07.12.2018 | Purdue University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

Small but ver­sat­ile; key play­ers in the mar­ine ni­tro­gen cycle can util­ize cy­anate and urea

10.12.2018 | Life Sciences

New method gives microscope a boost in resolution

10.12.2018 | Physics and Astronomy

Carnegie Mellon researchers probe hydrogen bonds using new technique

10.12.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>