Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pitt Researchers Create Nontoxic Clean-up Method for Common, Potentially Toxic Nano Materials

18.12.2008
Horseradish enzyme biodegrades carbon nanotubes increasingly used in products, from electronics to plastics

University of Pittsburgh researchers have developed the first natural, nontoxic method for biodegrading carbon nanotubes, a finding that could help diminish the environmental and health concerns that mar the otherwise bright prospects of the super-strong materials commonly used in products, from electronics to plastics.

A Pitt research team has found that carbon nanotubes deteriorate when exposed to the natural enzyme horseradish peroxidase (HRP), according to a report published recently in “Nano Letters” coauthored by Alexander Star, an assistant professor of chemistry in Pitt's School of Arts and Sciences, and Valerian Kagan, a professor and vice chair of the Department of Environmental and Occupational Health in Pitt's Graduate School of Public Health. These results open the door to further development of safe and natural methods-with HRP or other enzymes-of cleaning up carbon nanotube spills in the environment and the industrial or laboratory setting.

Carbon nanotubes are one-atom thick rolls of graphite 100,000 times smaller than a human hair yet stronger than steel and excellent conductors of electricity and heat. They reinforce plastics, ceramics, or concrete; conduct electricity in electronics or energy-conversion devices; and are sensitive chemical sensors, Star said. (Star created an early-detection device for asthma attacks wherein carbon nanotubes detect minute amounts of nitric oxide preceding an attack. See link below.)

“The many applications of nanotubes have resulted in greater production of them, but their toxicity remains controversial,” Star said. “Accidental spills of nanotubes are inevitable during their production, and the massive use of nanotube-based materials could lead to increased environmental pollution. We have demonstrated a nontoxic approach to successfully degrade carbon nanotubes in environmentally relevant conditions.”

The team's work focused on nanotubes in their raw form as a fine, graphite-like powder, Kagan explained. In this form, nanotubes have caused severe lung inflammation in lab tests. Although small, nanotubes contain thousands of atoms on their surface that could react with the human body in unknown ways, Kagan said. Both he and Star are associated with a three-year-old Pitt initiative to investigate nanotoxicology.

“Nanomaterials aren't completely understood. Industries use nanotubes because they're unique-they are strong, they can be used as semiconductors. But do these features present unknown health risks? The field of nanotoxicology is developing to find out,” Kagan said. “Studies have shown that they can be dangerous. We wanted to develop a method for safely neutralizing these very small materials should they contaminate the natural or working environment.”

To break down the nanotubes, the team exposed them to a solution of HRP and a low concentration of hydrogen peroxide at 4 degrees Celcius (39 degrees Fahrenheit) for 12 weeks. Once fully developed, this method could be administered as easily as chemical clean-ups in today's labs, Kagan and Star said.

Morgan Kelly | EurekAlert!
Further information:
http://www.pitt.edu

More articles from Materials Sciences:

nachricht New approach improving stability and optical properties of perovskite films
14.02.2019 | City University of Hong Kong

nachricht Calculating correlated materials from first principles
14.02.2019 | Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Regensburg physicists watch electron transfer in a single molecule

For the first time, an international team of scientists based in Regensburg, Germany, has recorded the orbitals of single molecules in different charge states in a novel type of microscopy. The research findings are published under the title “Mapping orbital changes upon electron transfer with tunneling microscopy on insulators” in the prestigious journal “Nature”.

The building blocks of matter surrounding us are atoms and molecules. The properties of that matter, however, are often not set by these building blocks...

Im Focus: University of Konstanz gains new insights into the recent development of the human immune system

Scientists at the University of Konstanz identify fierce competition between the human immune system and bacterial pathogens

Cell biologists from the University of Konstanz shed light on a recent evolutionary process in the human immune system and publish their findings in the...

Im Focus: Transformation through Light

Laser physicists have taken snapshots of carbon molecules C₆₀ showing how they transform in intense infrared light

When carbon molecules C₆₀ are exposed to an intense infrared light, they change their ball-like structure to a more elongated version. This has now been...

Im Focus: Famous “sandpile model” shown to move like a traveling sand dune

Researchers at IST Austria find new property of important physical model. Results published in PNAS

The so-called Abelian sandpile model has been studied by scientists for more than 30 years to better understand a physical phenomenon called self-organized...

Im Focus: Cryo-force spectroscopy reveals the mechanical properties of DNA components

Physicists from the University of Basel have developed a new method to examine the elasticity and binding properties of DNA molecules on a surface at extremely low temperatures. With a combination of cryo-force spectroscopy and computer simulations, they were able to show that DNA molecules behave like a chain of small coil springs. The researchers reported their findings in Nature Communications.

DNA is not only a popular research topic because it contains the blueprint for life – it can also be used to produce tiny components for technical applications.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Global Legal Hackathon at HAW Hamburg

11.02.2019 | Event News

The world of quantum chemistry meets in Heidelberg

30.01.2019 | Event News

Our digital society in 2040

16.01.2019 | Event News

 
Latest News

Gravitational waves will settle cosmic conundrum

15.02.2019 | Physics and Astronomy

Spintronics by 'straintronics'

15.02.2019 | Physics and Astronomy

Platinum nanoparticles for selective treatment of liver cancer cells

15.02.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>