Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physicists studied the influence of magnetic field on thin film structures

18.12.2018

Physicists studied the influence of inhomogeneity of magnetic field applied during the fabrication process of thin-film structures made from nickel-iron and iridium-manganese alloys, on their properties

A team of scientists from Immanuel Kant Baltic Federal University together with their colleagues from Russia, Japan, and Australia studied the influence of inhomogeneity of magnetic field applied during the fabrication process of thin-film structures made from nickel-iron and iridium-manganese alloys, on their properties. These systems can be used in various types of magnetic field sensors. The article of the team was published in the Journal of Magnetism and Magnetic Materials.


This is a visualization of a magnetic field between permanent magnets at the location of the substrate for the deposition of NiFe/IrMn film thin-film structure.

Courtesy of Valeria Rodionova

Magnetic materials are divided into several types depending on their reaction on an external magnetic field. For example, diamagnetic materialsbecome magnetized in opposite direction to the external field, while paramagnetic ones acquire the magnetic moment with the same direction as that of the field.

Two more classes of magnetic materials - ferromagnetic and antiferromagnetic - are different because they are able to preserve magnetic properties even in the absence of an external field. Ferromagnetic materials possess a remnant magnetic moment and can be used as permanent magnets, while the magnetic moment of antiferromagnetic materials is equal to zero in the absence of a magnetic field due to magnetic moments of sublattices that have opposite directions and cancel each other.

A typical phenomenon for the ferromagnetic materials is a magnetic hysteresis, i.e.a change in the intrinsic magnetic field strength of a ferromagnet upon increase or decrease of an external magnetic field strength.

A hysteresis loop of a ferromagnetic material is usually symmetrical over the point of origin. However, for materials that consist of two thin layers (an anti- and a ferromagnetic one) the hysteresis loop can be shifted over the origin point. This phenomenon is called the exchange bias and is explained to be caused by exchange coupling between ferromagnetic material with an antiferromagnetic one.

IKBFU physicists studied how the inhomogeneous magnetic field, applied during fabrication of thin films made from nickel-iron (NiFe) and iridium-manganese (IrMn), influence its properties.. The samples of thin films were made by the magnetron sputtering method. In this technology a target (a piece of a metal that should be sputtered) is bombarded by the inert atoms (e.g. atoms of a noble gas).

"We've demonstrated that the presence of an inhomogeneous magnetic field during the manufacture process of thin film exchange-coupled structures changes their magnetization reversal mechanism. If homogenous magnetic fields are used in this process, it leads to the classic shift of the hysteresis loop.

Changes in the homogeneity of the magnetic field affect both the value of the loop shift and the shape of the loop in the NiFe/IrMn film structure. We demonstrated that a step-wise hysteresis loop can be obtained for the sample that was created in the area with the highest gradient of the magnetic field. The regularities we discovered will help increase the sensitivity of magnetic field detectors," says Valeria Rodionova, a co-author of the work, candidate of Physico-Mathematical Sciences, and the Head of the Laboratory for New Magnetic Materials of IKBFU.

###

The work was carried out together with scientists from Moscow State University, Tohoku University, University of New South Wales, and National University of Science and Technology MISiS.

Fig. 1. Visualization of a magnetic field between permanent magnets at the location of the substrate for the deposition of NiFe/IrMn film thin-film structure. Courtesy of Valery Rodionov.

Julia Shkurkina | EurekAlert!
Further information:
https://linkinghub.elsevier.com/retrieve/pii/S0304885318328142
http://dx.doi.org/10.1016/j.jmmm.2018.10.013

More articles from Materials Sciences:

nachricht Carnegie Mellon researchers create soft, flexible materials with enhanced properties
24.05.2019 | Carnegie Mellon University

nachricht Plumbene, graphene's latest cousin, realized on the 'nano water cube'
23.05.2019 | Nagoya University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New studies increase confidence in NASA's measure of Earth's temperature

A new assessment of NASA's record of global temperatures revealed that the agency's estimate of Earth's long-term temperature rise in recent decades is accurate to within less than a tenth of a degree Fahrenheit, providing confidence that past and future research is correctly capturing rising surface temperatures.

The most complete assessment ever of statistical uncertainty within the GISS Surface Temperature Analysis (GISTEMP) data product shows that the annual values...

Im Focus: The geometry of an electron determined for the first time

Physicists at the University of Basel are able to show for the first time how a single electron looks in an artificial atom. A newly developed method enables them to show the probability of an electron being present in a space. This allows improved control of electron spins, which could serve as the smallest information unit in a future quantum computer. The experiments were published in Physical Review Letters and the related theory in Physical Review B.

The spin of an electron is a promising candidate for use as the smallest information unit (qubit) of a quantum computer. Controlling and switching this spin or...

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

On Mars, sands shift to a different drum

24.05.2019 | Physics and Astronomy

Piedmont Atlanta first in Georgia to offer new minimally invasive treatment for emphysema

24.05.2019 | Medical Engineering

Chemical juggling with three particles

24.05.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>