Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Paper skin sensors for environmental monitoring

24.02.2016

A paper-based sensor that mimics the sensory functions of human skin has been developed for the first time from low-cost and commonly available household materials.

Everyday materials found in the kitchen, such as aluminum foil, sticky note paper, sponges and tape, have been used by a team of electrical engineers from King Abdullah University of Science and Technology (KAUST) to develop a low-cost sensor that can detect external stimuli, including touch, pressure, temperature, acidity and humidity. Their work was published on February 19, 2016 in the inaugural issue of Advanced Materials Technologies by Wiley-VCH (Germany).


The flexible temperature array was made by drawing a resistor structure with a silver conductive ink pen on Post-it paper. © 2016 KAUST

The sensor, which is called Paper Skin, performs as well as other artificial skin applications currently being developed while integrating multiple functions using cost-effective materials.

Wearable and flexible electronics show promise for a variety of applications, such as wireless monitoring of patient health and touch-free computer interfaces, but current research in this direction employs expensive and sophisticated materials and processes.

“Our work has the potential to revolutionize the electronics industry and opens the door to commercializing affordable high-performance sensing devices,” stated Muhammad Mustafa Hussain, KAUST associate professor of electrical engineering from the University’s Integrated Nanotechnology Lab, where the research was conducted.

"Previous efforts in this direction used sophisticated materials or processes,” Hussain continued. “Chemically functionalized inkjet printed or vacuum technology-processed papers—albeit cheap—have shown limited functionalities. Here we show a scalable ‘garage’ fabrication approach using off-the-shelf and inexpensive household elements.”

The team used sticky note paper to detect humidity, sponges and wipes to detect pressure and aluminum foil to detect motion. Coloring a sticky note with an HB pencil allowed the paper to detect acidity levels, and aluminum foil and conductive silver ink were used to detect temperature differences.

The materials were put together into a simple paper-based platform that was then connected to a device that detected changes in electrical conductivity according to external stimuli.

Increasing levels of humidity, for example, increased the platform’s ability to store an electrical charge, or its capacitance. Exposing the sensor to an acidic solution increased its resistance, while exposing it to an alkaline solution decreased it. Voltage changes were detected with temperature changes. Bringing a finger closer to the platform disturbed its electromagnetic field, decreasing its capacitance.

The team leveraged the various properties of the materials they used, including their porosity, adsorption, elasticity and dimensions to develop the low-cost sensory platform. They also demonstrated that a single integrated platform could simultaneously detect multiple stimuli in real time.

Several challenges must be overcome before a fully autonomous, flexible and multifunctional sensory platform becomes commercially achievable, explained Hussain. Wireless interaction with the paper skin needs to be developed. Reliability tests also need to be conducted to assess how long the sensor can last and how good its performance is under severe bending conditions.

“The next stage will be to optimize the sensor’s integration on this platform for applications in medical monitoring systems. The flexible and conformal sensory platform will enable simultaneous real-time monitoring of body vital signs, such as heart rate, blood pressure, breathing patterns and movement,” Hussain said.

“We may also transfer the achieved functionalities of the technology to biologically grown skin and develop mechanisms to connect it to neuronal networks in the human body to assist burn victims, for example. Other applications include robotics, vehicular technology and environmental surveys,” he added.

KAUST-NSF Research Conference on Electronic Materials, Devices and Systems for a Sustainable Future:

From March 14 to 16, 2016 Hussain and colleagues from KAUST and the United States National Science Foundation (NSF) will host the KAUST-NSF Research Conference on Electronic Materials, Devices and Systems for a Sustainable Future on the KAUST campus. Work in the electronics field, such as Hussain's low-cost paper sensor, will be highlighted during the three-day event.

The conference will also provide the opportunity for the KAUST scholarly community to exhibit research and innovations through a poster presentation session. Submission for posters will be available from February 21 to March 1.

The conference is made possible with financial support from the KAUST Office of Sponsored Research. It is co-sponsored by the National Science Foundation (NSF), United States of America, KAUST Industry Collaboration Program (KICP) and the Computer, Electrical and Mathematical Science and Engineering (CEMSE) Division.

https://discovery.kaust.edu.sa/en/article/196/artificial-skin-sensors-made-from-sticky-notes
DOI: 10.1002/admt.201600004

About Muhammad Mustafa Hussain:
Muhammad Mustafa Hussain (Ph.D., The University of Texas at Austin, U.S., December 2005) is associate professor of electrical engineering at KAUST. Before joining the University, he was a program manager of the emerging technology program in SEMATECH (Austin, Texas, U.S.), funded by DARPA NEMS, CERA and STEEP programs.

A regular panelist of U.S. NSF grant reviewing committees, Hussain is also editor-in-chief of Applied Nanoscience (Springer), editor of IEEE Transactions on Electron Devices and an IEEE senior member. He has served as a first or corresponding author in 80% of his 232 research papers and has 41 issued or pending U.S. patents.

About King Abdullah University of Science and Technology:
King Abdullah University of Science and Technology (KAUST) is an international, graduate-level research university located along the Red Sea in Saudi Arabia. KAUST is dedicated to advancing science and technology through interdisciplinary research, education and innovation. Curiosity driven and goal-oriented research is conducted by students, faculty, scientists and engineers to address the world’s pressing scientific and technological challenges related to food, water, energy and the environment. www.kaust.edu.sa


Associated links
Original article from King Abdullah University of Science and Technology

Journal information

Advanced Materials Technologies

Michelle D'Antoni | Research SEA
Further information:
http://www.researchsea.com

More articles from Materials Sciences:

nachricht Research finds new molecular structures in boron-based nanoclusters
13.07.2018 | Brown University

nachricht 3D-Printing: Support structures to prevent vibrations in post-processing of thin-walled parts
12.07.2018 | Fraunhofer-Institut für Produktionstechnologie IPT

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Research finds new molecular structures in boron-based nanoclusters

13.07.2018 | Materials Sciences

Algae Have Land Genes

13.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>