Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Packing in six times more storage density with the help of table salt

17.10.2011
Dr Joel Yang from the Institute of Materials Research and Engineering with collaborators from the National University of Singapore and the Data Storage Institute has developed a process that can increase the data recording density of hard disks to 3.3 Terabit/in2, six times that of of current models. The key ingredient? Regular table salt.

It’s like packing your clothes in your suitcase when you travel. The neater you pack them the more you can carry. In the same way, the team of scientists has used nanopatterning to closely pack more of the miniature structures that hold information in the form of bits, per unit area.

Dr Joel Yang’s IMRE research team, working with peers from A*STAR’s DSI and NUS, has used nanopatterning to create uniform arrays of magnetic bits that can potentially store up to 3.3 Terabit/in2 of information, six times the recording density of current devices. This means that a hard disk drive that holds 1 Terabyte (TB) of data today could, in the future, hold 6 TB of information in the same size using this new technology.

Conventional hard disks have randomly distributed nanoscopic magnetic grains - with a few tens of grains used to form one bit – that enable the latest hard disk models to hold up to 0.5 Terabit/in2 of information. The IMRE-led team used the bit-patterned media approach, where magnetic islands are patterned in a regular fashion, with each single island able to store one bit of information.

“What we have shown is that bits can be patterned more densely together by reducing the number of processing steps”, said Dr Joel Yang, the IMRE scientist who heads the project. Current technology uses very tiny ‘grains’ of about 7-8 nm in size deposited on the surface of storage media. However, information or a single bit, is stored in a cluster of these ‘grains’ and not in any single ‘grain’. IMRE’s bits are about 10nm in size but store information in a single structure.

The method has been demonstrated to achieve data-storage capability at 1.9 Terabit/in2, though bits of up to 3.3 Terabit/in2 densities were fabricated. “In addition to making the bits, we demonstrated that they can be used to store data,” explained Dr Yang.

The secret of the research lies in the use of an extremely high-resolution e-beam lithography process that produces super fine nano-sized structures. Dr Yang discovered that by adding sodium chloride to a developer solution used in existing lithography processes, he was able to produce highly defined nanostructures down to 4.5 nm half pitch, without the need for expensive equipment upgrades. This ‘salty developer solution’ method was invented by Dr Yang when he was a graduate student at the Massachusetts Institute of Technology.

This work is the result of a collaborative effort with Prof Vivian Ng’s group at NUS, and Dr Yunjie Chen, Dr Siang Huei Leong, and Mr Tianli Huang from A*STAR DSI’s 10 Terabit/in2 Magnetic Recording programme. The researchers are now looking at increasing the storage density further.

REFERENCES:

Fabrication and characterization of bit-patterned media beyond 1.5 Tbit/in2

Joel K WYang, Yunjie Chen, Tianli Huang, Huigao Duan,Naganivetha Thiyagarajah, Hui Kim Hui, SiangHuei Leong and Vivian Ng. Nanotechnology 22 (2011) 385301. DOI:10.1088/0957-4484/22/38/385301 (PDF attached below)

Using high-contrast salty development of hydrogen silsesquioxane for sub-10-nm half-pitch lithography

Joel K W Yang, Karl K Berggren. Journal of Vacuum Science and Technology B: Microelectronics and Nanometer Structures (2007); Volume: 25, Issue: 6, Pages: 2025. DOI: 10.1116/1.2801881

For media enquiries, please contact:

Mr Eugene Low
Manager, Corporate Communications
for Institute of Materials Research and Engineering (IMRE)
3, Research Link
Singapore 117602
DID +65 6874 8491
Mobile +65 9230 9235
Email loweom@scei.a-star.edu.sg
Ms Melissa Koh
Senior Officer, Corporate Communications
for Data Storage Institute (DSI)
5 Engineering Drive 1
(Off Kent Ridge Crescent, NUS)
Singapore 117608
DID +65 6874 6852
Email kohljm@scei.a-star.edu.sg
For technical enquiries, please contact:
Dr Joel Yang
Scientist I
Institute of Materials Research and Engineering (IMRE)
3, Research Link
Singapore 117602
DID +65 6874 8385
Email yangkwj@imre.a-star.edu.dg
About the Institute of Materials Research and Engineering (IMRE)
The Institute of Materials Research and Engineering (IMRE) is a research institute of the Agency for Science, Technology and Research (A*STAR). The Institute has capabilities in materials analysis & characterisation, design & growth, patterning & fabrication, and synthesis & integration. We house a range of state-of-the-art equipment for materials research including development, processing and characterisation. IMRE conducts a wide range of research, which includes novel materials for organic solar cells, photovoltaics, printed electronics, catalysis, bio-mimetics, microfluidics, quantum dots, heterostructures, sustainable materials, atom technology, etc. We collaborate actively with other research institutes, universities, public bodies, and a wide spectrum of industrial companies, both globally and locally. For more information about IMRE, please visit www.imre.a-star.edu.sg.

About the Agency for Science, Technology and Research (A*STAR)

The Agency for Science, Technology and Research (A*STAR) is the lead agency for fostering world-class scientific research and talent for a vibrant knowledge-based and innovation-driven Singapore. A*STAR oversees 14 biomedical sciences and physical sciences and engineering research institutes, and six consortia & centres, located in Biopolis and Fusionopolis as well as their immediate vicinity. A*STAR supports Singapore's key economic clusters by providing intellectual, human and industrial capital to its partners in industry. It also supports extramural research in the universities, and with other local and international partners. For more information about A*STAR, please visit www.a-star.edu.sg.

Eugene Low | Research asia research news
Further information:
http://www.a-star.edu.s
http://www.researchsea.com

More articles from Materials Sciences:

nachricht Turning up the heat to create new nanostructured metals
20.11.2019 | DOE/Brookhaven National Laboratory

nachricht Small particles, big effects: How graphene nanoparticles improve the resolution of microscopes
20.11.2019 | Max-Planck-Institut für Polymerforschung

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Small particles, big effects: How graphene nanoparticles improve the resolution of microscopes

Conventional light microscopes cannot distinguish structures when they are separated by a distance smaller than, roughly, the wavelength of light. Superresolution microscopy, developed since the 1980s, lifts this limitation, using fluorescent moieties. Scientists at the Max Planck Institute for Polymer Research have now discovered that graphene nano-molecules can be used to improve this microscopy technique. These graphene nano-molecules offer a number of substantial advantages over the materials previously used, making superresolution microscopy even more versatile.

Microscopy is an important investigation method, in physics, biology, medicine, and many other sciences. However, it has one disadvantage: its resolution is...

Im Focus: Atoms don't like jumping rope

Nanooptical traps are a promising building block for quantum technologies. Austrian and German scientists have now removed an important obstacle to their practical use. They were able to show that a special form of mechanical vibration heats trapped particles in a very short time and knocks them out of the trap.

By controlling individual atoms, quantum properties can be investigated and made usable for technological applications. For about ten years, physicists have...

Im Focus: Images from NJIT's big bear solar observatory peel away layers of a stellar mystery

An international team of scientists, including three researchers from New Jersey Institute of Technology (NJIT), has shed new light on one of the central mysteries of solar physics: how energy from the Sun is transferred to the star's upper atmosphere, heating it to 1 million degrees Fahrenheit and higher in some regions, temperatures that are vastly hotter than the Sun's surface.

With new images from NJIT's Big Bear Solar Observatory (BBSO), the researchers have revealed in groundbreaking, granular detail what appears to be a likely...

Im Focus: New opportunities in additive manufacturing presented

Fraunhofer IFAM Dresden demonstrates manufacturing of copper components

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM in Dresden has succeeded in using Selective Electron Beam Melting (SEBM) to...

Im Focus: New Pitt research finds carbon nanotubes show a love/hate relationship with water

Carbon nanotubes (CNTs) are valuable for a wide variety of applications. Made of graphene sheets rolled into tubes 10,000 times smaller than a human hair, CNTs have an exceptional strength-to-mass ratio and excellent thermal and electrical properties. These features make them ideal for a range of applications, including supercapacitors, interconnects, adhesives, particle trapping and structural color.

New research reveals even more potential for CNTs: as a coating, they can both repel and hold water in place, a useful property for applications like printing,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

 
Latest News

The neocortex is critical for learning and memory

20.11.2019 | Life Sciences

4D imaging with liquid crystal microlenses

20.11.2019 | Physics and Astronomy

Walking Changes Vision

20.11.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>