Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Packing in six times more storage density with the help of table salt

17.10.2011
Dr Joel Yang from the Institute of Materials Research and Engineering with collaborators from the National University of Singapore and the Data Storage Institute has developed a process that can increase the data recording density of hard disks to 3.3 Terabit/in2, six times that of of current models. The key ingredient? Regular table salt.

It’s like packing your clothes in your suitcase when you travel. The neater you pack them the more you can carry. In the same way, the team of scientists has used nanopatterning to closely pack more of the miniature structures that hold information in the form of bits, per unit area.

Dr Joel Yang’s IMRE research team, working with peers from A*STAR’s DSI and NUS, has used nanopatterning to create uniform arrays of magnetic bits that can potentially store up to 3.3 Terabit/in2 of information, six times the recording density of current devices. This means that a hard disk drive that holds 1 Terabyte (TB) of data today could, in the future, hold 6 TB of information in the same size using this new technology.

Conventional hard disks have randomly distributed nanoscopic magnetic grains - with a few tens of grains used to form one bit – that enable the latest hard disk models to hold up to 0.5 Terabit/in2 of information. The IMRE-led team used the bit-patterned media approach, where magnetic islands are patterned in a regular fashion, with each single island able to store one bit of information.

“What we have shown is that bits can be patterned more densely together by reducing the number of processing steps”, said Dr Joel Yang, the IMRE scientist who heads the project. Current technology uses very tiny ‘grains’ of about 7-8 nm in size deposited on the surface of storage media. However, information or a single bit, is stored in a cluster of these ‘grains’ and not in any single ‘grain’. IMRE’s bits are about 10nm in size but store information in a single structure.

The method has been demonstrated to achieve data-storage capability at 1.9 Terabit/in2, though bits of up to 3.3 Terabit/in2 densities were fabricated. “In addition to making the bits, we demonstrated that they can be used to store data,” explained Dr Yang.

The secret of the research lies in the use of an extremely high-resolution e-beam lithography process that produces super fine nano-sized structures. Dr Yang discovered that by adding sodium chloride to a developer solution used in existing lithography processes, he was able to produce highly defined nanostructures down to 4.5 nm half pitch, without the need for expensive equipment upgrades. This ‘salty developer solution’ method was invented by Dr Yang when he was a graduate student at the Massachusetts Institute of Technology.

This work is the result of a collaborative effort with Prof Vivian Ng’s group at NUS, and Dr Yunjie Chen, Dr Siang Huei Leong, and Mr Tianli Huang from A*STAR DSI’s 10 Terabit/in2 Magnetic Recording programme. The researchers are now looking at increasing the storage density further.

REFERENCES:

Fabrication and characterization of bit-patterned media beyond 1.5 Tbit/in2

Joel K WYang, Yunjie Chen, Tianli Huang, Huigao Duan,Naganivetha Thiyagarajah, Hui Kim Hui, SiangHuei Leong and Vivian Ng. Nanotechnology 22 (2011) 385301. DOI:10.1088/0957-4484/22/38/385301 (PDF attached below)

Using high-contrast salty development of hydrogen silsesquioxane for sub-10-nm half-pitch lithography

Joel K W Yang, Karl K Berggren. Journal of Vacuum Science and Technology B: Microelectronics and Nanometer Structures (2007); Volume: 25, Issue: 6, Pages: 2025. DOI: 10.1116/1.2801881

For media enquiries, please contact:

Mr Eugene Low
Manager, Corporate Communications
for Institute of Materials Research and Engineering (IMRE)
3, Research Link
Singapore 117602
DID +65 6874 8491
Mobile +65 9230 9235
Email loweom@scei.a-star.edu.sg
Ms Melissa Koh
Senior Officer, Corporate Communications
for Data Storage Institute (DSI)
5 Engineering Drive 1
(Off Kent Ridge Crescent, NUS)
Singapore 117608
DID +65 6874 6852
Email kohljm@scei.a-star.edu.sg
For technical enquiries, please contact:
Dr Joel Yang
Scientist I
Institute of Materials Research and Engineering (IMRE)
3, Research Link
Singapore 117602
DID +65 6874 8385
Email yangkwj@imre.a-star.edu.dg
About the Institute of Materials Research and Engineering (IMRE)
The Institute of Materials Research and Engineering (IMRE) is a research institute of the Agency for Science, Technology and Research (A*STAR). The Institute has capabilities in materials analysis & characterisation, design & growth, patterning & fabrication, and synthesis & integration. We house a range of state-of-the-art equipment for materials research including development, processing and characterisation. IMRE conducts a wide range of research, which includes novel materials for organic solar cells, photovoltaics, printed electronics, catalysis, bio-mimetics, microfluidics, quantum dots, heterostructures, sustainable materials, atom technology, etc. We collaborate actively with other research institutes, universities, public bodies, and a wide spectrum of industrial companies, both globally and locally. For more information about IMRE, please visit www.imre.a-star.edu.sg.

About the Agency for Science, Technology and Research (A*STAR)

The Agency for Science, Technology and Research (A*STAR) is the lead agency for fostering world-class scientific research and talent for a vibrant knowledge-based and innovation-driven Singapore. A*STAR oversees 14 biomedical sciences and physical sciences and engineering research institutes, and six consortia & centres, located in Biopolis and Fusionopolis as well as their immediate vicinity. A*STAR supports Singapore's key economic clusters by providing intellectual, human and industrial capital to its partners in industry. It also supports extramural research in the universities, and with other local and international partners. For more information about A*STAR, please visit www.a-star.edu.sg.

Eugene Low | Research asia research news
Further information:
http://www.a-star.edu.s
http://www.researchsea.com

More articles from Materials Sciences:

nachricht A materials scientist’s dream come true
21.08.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Novel sensors could enable smarter textiles
17.08.2018 | University of Delaware

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Air pollution leads to cardiovascular diseases

21.08.2018 | Ecology, The Environment and Conservation

Researchers target protein that protects bacteria's DNA 'recipes'

21.08.2018 | Life Sciences

A paper battery powered by bacteria

21.08.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>