Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ORNL Researchers Tune Friction in Ionic Solids at the Nanoscale

29.01.2015

Friction impacts motion, hence the need to control friction forces. Currently, this is accomplished by mechanistic means or lubrication, but experiments conducted by researchers at the Department of Energy’s Oak Ridge National Laboratory have uncovered a way of controlling friction on ionic surfaces at the nanoscale using electrical stimulation and ambient water vapor.

The research, which demonstrates a new physical effect, was undertaken at the Center for Nanophase Materials Sciences, a DOE Office of Science User Facility at ORNL, and is published in the journal Scientific Reports.


ORNL

Researchers used electricity and water to control friction levels on ionic surfaces at the nanoscale. As water forms around the nanoscale electrode, it allows for further penetration into the sample surface, thereby increasing or decreasing friction.

“Our finding can have a significant technological impact on applications for both macroscopic and nanoscale devices,” said lead author Evgheni Strelcov. “Decreasing or increasing nanoscale friction at will and thus controlling mechanical energy losses and wear of a microelectromechanical system’s parts has enormous implications for applied energy research and opens a new vista for fundamental science studies.”

By inducing a strong electric field using an atomic force microscope, the researchers were able to both increase and decrease friction between a moving nanoscale electrode and an ionic surface. They argue that the primary effect responsible for this behavior is condensation of moisture from the surrounding air into liquid that can then reduce friction.

Simultaneously, further strengthening the electric field results in the nanoscale electrode penetrating the surface and an increase of friction. This penetration is a new and unexpected effect, and the overall approach differs from other methods of friction control that often require adding a lubricant to the system instead of drawing on resources readily available in the immediate environment.

Additionally, unlike other electrochemical friction control practices, the new technique does not require an electrical current, which is associated with energy losses.

“Absence of current is highly beneficial from a power-saving perspective as it eliminates Joule heating and other parasitic power-consuming effects,” says Bobby Sumpter, who led the group developing associated theoretical models.

This work builds on extensive efforts at CNMS exploring the electrical manipulation of mechanical, electrochemical and ferroelectric properties of materials.

“We adopted this biased view on the nanoscale almost a decade ago,” said contributing author Sergei Kalinin. “Now we can proceed from observation to control of even such sublime phenomena as friction, and it is indeed very surprising and promising that we can both increase and decrease it.”
The paper can be accessed at: http://www.nature.com/srep/2015/150127/srep08049/full/srep08049.html

The articles authors are Oak Ridge National Laboratory’s Rajeev Kumar and Bobby Sumpter of the Center for Nanophase Materials Sciences and Computer Science and Mathematics Division; Vera Bocharova of the Chemical Science Division; and Sergei Kalinin, Evgheni Strelcov and Alexander Tselev of the Center for Nanophase Materials Sciences.

The work was supported by the Laboratory Directed Research and Development Program at the Department of Energy’s Oak Ridge National Laboratory. The research was conducted at the Center for Nanophase Materials Sciences, a DOE Office of Science User Facility at Oak Ridge National Laboratory.

UT-Battelle manages ORNL for the Department of Energy’s Office of Science. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit http://science.energy.gov/ .

###

Image: http://www.ornl.gov/Image%20Library/Main%20Nav/ORNL/News/News%20Releases/2015/FrictionRelease_hr.jpeg?code=9291070a-54fc-4949-a54c-792b949d956d 

Caption: Researchers used electricity and water to control friction levels on ionic surfaces at the nanoscale. As water forms around the nanoscale electrode, it allows for further penetration into the sample surface, thereby increasing or decreasing friction.

Chris Samoray | newswise

More articles from Materials Sciences:

nachricht Barely scratching the surface: A new way to make robust membranes
13.12.2018 | DOE/Argonne National Laboratory

nachricht Topological material switched off and on for the first time
11.12.2018 | ARC Centre of Excellence in Future Low-Energy Electronics Technologies

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Data use draining your battery? Tiny device to speed up memory while also saving power

14.12.2018 | Power and Electrical Engineering

Tangled magnetic fields power cosmic particle accelerators

14.12.2018 | Physics and Astronomy

In search of missing worlds, Hubble finds a fast evaporating exoplanet

14.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>