Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ORNL microscopy reveals workings behind promising inexpensive catalyst

12.06.2012
A newly developed carbon nanotube material could help lower the cost of fuel cells, catalytic converters and similar energy-related technologies by delivering a substitute for expensive platinum catalysts.

The precious metal platinum has long been prized for its ability to spur key chemical reactions in a process called catalysis, but at more than $1,000 an ounce, its high price is a limiting factor for applications like fuel cells, which rely on the metal.

In a search for an inexpensive alternative, a team including researchers from the Department of Energy's Oak Ridge National Laboratory turned to carbon, one of the most abundant elements. Led by Stanford University's Hongjie Dai, the team developed a multi-walled carbon nanotube complex that consists of cylindrical sheets of carbon.

Once the outer wall of the complex was partially "unzipped" with the addition of ammonia, the material was found to exhibit catalytic properties comparable to platinum. Although the researchers suspected that the complex's properties were due to added nitrogen and iron impurities, they couldn't verify the material's chemical behavior until ORNL microscopists imaged it on an atomic level.

"With conventional transmission electron microscopy, it is hard to identify elements," said team member Juan-Carlos Idrobo of ORNL. "Using a combination of imaging and spectroscopy in our scanning transmission electron microscope, the identification of the elements is straight-forward because the intensity of the nanoscale images tells you which element it is. The brighter the intensity, the heavier the element. Spectroscopy can then identify the specific element. "

ORNL microscopic analysis confirmed that the nitrogen and iron elements were indeed incorporated into the carbon structure, causing the observed catalytic properties similar to those of platinum. The next step for the team is to understand the relationship between the nitrogen and iron to determine whether the elements work together or independently.

The team's findings are published in Nature Nanotechnology as "An oxygen reduction electrocatalyst based on carbon nanotube–graphene complexes." Coauthors on the paper are ORNL's Stephen Pennycook and Juan-Carlos Idrobo, Vanderbilt University's Wu Zhou, Stanford's Yanguang Li, Hailiang Wang, Liming Xie and Yongye Liang, and Tsinghua University's Fei Wei.

Research was carried out in part at the Shared Equipment Research Facility (ShaRE), a user facility supported by the U.S. Department of Energy, Office of Science; and by the Materials Sciences and Engineering Division in DOE's Office of Basic Energy Sciences.

ORNL is managed by UT-Battelle for the Department of Energy's Office of Science. DOE's Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit http://science.energy.gov.

Morgan McCorkle | EurekAlert!
Further information:
http://www.ornl.gov

More articles from Materials Sciences:

nachricht OrganoPor: Bio-Based Boards for A Thermal Insulation Composite System
21.02.2020 | Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF

nachricht Freiburg researcher investigate the origins of surface texture
17.02.2020 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Active droplets

21.02.2020 | Medical Engineering

Finding new clues to brain cancer treatment

21.02.2020 | Health and Medicine

Beyond the brim, Sombrero Galaxy's halo suggests turbulent past

21.02.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>