Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The origin of organic magnets

05.03.2012
A theoretical model for the unusual occurrence of magnetism in organic molecules may help develop this class of material for electronics applications.

Electrical engineers are starting to consider materials made from organic molecules—including those made from carbon atoms—as an intriguing alternative to the silicon and metals used currently in electronic devices, since they are easier and cheaper to produce.


A compound comprising C60 (right), a spherical molecule of carbon atoms, and TDAE (left), tetrakis-dimethylamino-ethylene, is unusual because it can display magnetic behavior at low temperatures. Copyright : 2012 Tohru Sato

A RIKEN-led research team has now demonstrated the origin of magnetism in organic molecules1, a property that is rarely found in this class of material, but is vital if a full range of organic electronic devices is to be created.

The permanent magnetic properties of materials such as iron stem from an intrinsic mechanism called ferromagnetism. Ferromagnetism in organic materials is rare because their atomic structure is fundamentally different from metals. One of the few examples identified to date is called TDAE-C60: a compound comprising spherical carbon cages attached to an organic molecule known as tetrakis-dimethylamino-ethylene. Since its identification in 1991, many theoretical and experimental studies have provided some insight into the mechanism driving this unexpected ferromagnetism, but the explanation was not definitive.

A full understanding would help materials scientists to develop more advanced magnetic materials in the future. “A precise model for organic magnetism could aid the design of high-density recording materials for use in next-generation memories,” says team member Hitoshi Yamaoka from the RIKEN SPring-8 Center, Harima.

Materials scientists are particularly interested in understanding the electronic structure of TDAE-C60 and how this relates to its ferromagnetic properties. To this end, Yamaoka and his colleagues from research institutes across Japan studied this material using a powerful technique known as photoelectron spectroscopy (PES). They fired x-rays at a single crystal of TDAE-C60, and this radiation excited electrons in the crystal, which then escaped from the surface. The researchers measured the number and the kinetic energy of these electrons from which they could infer information about the electronic structure.

“From these experiments on a single crystal we could establish an exact theoretical model for organic magnetism,” explains Yamaoka. “We propose that the transfer of one electron from the TDAE to the C60 causes the magnetic properties of TDAE-C60.” The existence of the resulting positively charge TDAE state was also supported by the team’s theoretical calculations.

With this thorough understanding of organic magnetism, the next step will be to apply the material to practical applications. “The problem with the TDAE-C60 organic magnet, however, is that the magnetism only appears at temperatures below 16 kelvin,” says Yamaoka. “The next step will be to raise this transition point.”

The corresponding author for this highlight is based at the Coherent X-Ray Optics Laboratory, RIKEN SPring-8 Center

gro-pr | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

More articles from Materials Sciences:

nachricht New materials of perovskite challenge the chemical intuition
01.07.2020 | Institute of Physics, Chinese Academy of Sciences

nachricht How to design more reliable nano- and micro-electro-mechanical systems
30.06.2020 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: ILA Goes Digital – Automation & Production Technology for Adaptable Aircraft Production

Live event – July 1, 2020 - 11:00 to 11:45 (CET)
"Automation in Aerospace Industry @ Fraunhofer IFAM"

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM l Stade is presenting its forward-looking R&D portfolio for the first time at...

Im Focus: AI monitoring of laser welding processes - X-ray vision and eavesdropping ensure quality

With an X-ray experiment at the European Synchrotron ESRF in Grenoble (France), Empa researchers were able to demonstrate how well their real-time acoustic monitoring of laser weld seams works. With almost 90 percent reliability, they detected the formation of unwanted pores that impair the quality of weld seams. Thanks to a special evaluation method based on artificial intelligence (AI), the detection process is completed in just 70 milliseconds.

Laser welding is a process suitable for joining metals and thermoplastics. It has become particularly well established in highly automated production, for...

Im Focus: A structural light switch for magnetism

A research team from the Max Planck Institute for the Structure of Dynamics (MPSD) and the University of Oxford has managed to drive a prototypical antiferromagnet into a new magnetic state using terahertz frequency light. Their groundbreaking method produced an effect orders of magnitude larger than previously achieved, and on ultrafast time scales. The team’s work has just been published in Nature Physics.

Magnetic materials have been a mainstay in computing technology due to their ability to permanently store information in their magnetic state. Current...

Im Focus: Virtually Captured

Biomechanical analyses and computer simulations reveal the Venus flytrap snapping mechanisms

The Venus flytrap (Dionaea muscipula) takes only 100 milliseconds to trap its prey. Once their leaves, which have been transformed into snap traps, have...

Im Focus: NASA observes large Saharan dust plume over Atlantic ocean

NASA-NOAA's Suomi NPP satellite observed a huge Saharan dust plume streaming over the North Atlantic Ocean, beginning on June 13. Satellite data showed the dust had spread over 2,000 miles.

At NASA's Goddard Space Flight Center in Greenbelt, Maryland, Colin Seftor, an atmospheric scientist, created an animation of the dust and aerosols from the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

First exposed planetary core discovered

01.07.2020 | Physics and Astronomy

Energy-saving servers: Data storage 2.0

01.07.2020 | Power and Electrical Engineering

Laser takes pictures of electrons in crystals

01.07.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>