Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Optoelectronic materials: Optimum solution

09.08.2011
Highly efficient organic light-emitting diodes are created by optimizing the molecular structure and device configuration

Organic light-emitting diodes (OLEDs) are seen as a promising replacement for the liquid-crystal displays (LCDs) used in many flat-screen televisions because they are cheaper to mass-produce. Zhikuan Chen at the A*STAR Institute of Materials Research and Engineering and co-workers have now shown how meticulous engineering of fluorescent molecules can dramatically increase OLED efficiency.

Conventional light-emitting diodes are made of inorganic crystals such as gallium arsenide. OLEDS, on the other hand, utilize carbon-based materials that can be made flexible. Today, OLED technology is commonly used to make large-area outdoor displays and wearable displays. However, further improvements in operation efficiency are required if OLEDs are to become truly competitive against the alternative options.

Chen and his co-workers have now reported blue light-emitting devices that reach an external quantum efficiency (EQE) of as high as 9.4%—almost double the classical upper limit of 5% for fluorescence-based OLEDs. “This improvement is important because higher efficiency means a lower driving voltage and thus lower power consumption and increased device lifetime,” explains Chen.

EQE is an important measure of LED operation as it determines what fraction of the charge carriers injected into the device are converted into photons that can be emitted. EQE takes into account the chance that the two types of charge carriers—negatively charged electrons and positively charged holes—recombine with each other, as well as the intrinsic probability that this results in the creation of a photon and the chance that this photon will escape from the device. Chen and his team have now used computer models to optimize these various processes.

Simulations enabled the researchers to find a structure for their active molecule—an oligofluorene—that best balanced charge carrier injection into the material and charge transport through it to enhance device emission efficiency. Further improvements were made by selecting the best emitting-layer thickness and by doping the emitter in an appropriate organic host material to minimize efficiency loss.

The OLEDs emitted blue light centered at a wavelength of 450 nanometers. Chen and his co-workers found that the high EQE was possible because the fraction of charge carriers that recombine without emitting light was negligible. Importantly, the light output was stable during operation, making it more amenable to use in practical situations. “Soon we hope to develop these materials further for lighting and displays applications,” says Chen.

The A*STAR-affiliated researchers contributing to this research are from the Institute of Materials Research and Engineering

References
Zhen, C. G. et al. Achieving highly efficient fluorescent blue organic light-emitting diodes through optimizing molecular structures and device configuration. Advanced Functional Materials 21, 699–707 (2011).

Lee Swee Heng | Research asia research news
Further information:
http://www.imre.a-star.edu.sg/
http://www.researchsea.com

More articles from Materials Sciences:

nachricht Using fine-tuning for record-breaking performance
14.11.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Materials scientist creates fabric alternative to batteries for wearable devices
12.11.2018 | University of Massachusetts at Amherst

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

How algae and carbon fibers could sustainably reduce the athmospheric carbon dioxide concentration

14.11.2018 | Life Sciences

NIH scientists illuminate causes of hepatitis b virus-associated acute liver failure

14.11.2018 | Life Sciences

The unintended consequences of dams and reservoirs

14.11.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>