Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Optical materials: Holey gold

08.06.2012
Imaging nanoporous metals with beams of electrons provides deep insights into the unusual optical properties of these materials

Gold is usually thought of as being a shiny metal — however, in its porous form, gold actually appears dull and black. The surfaces of nanoporous gold are rough and the metal loses its shine.

Michel Bosman at the A*STAR Institute of Materials Research and Engineering and co-workers have now experimentally demonstrated that the dullness is a consequence of the way incoming light couples to the electrons on the gold surface1.

A beam of light hitting metal can cause all of the electrons at the surface to oscillate in unison. If the light is within an appropriate narrow band of wavelengths, it gets absorbed by the surface and creates half-matter hybrid particles known as surface plasmon polaritons (SPPs). Bosman and his team showed that the narrow-band absorption of many SPPs across a surface can combine to give the broadband high-absorption characteristics of nanoporous materials.
“Our measurements show that these materials are not black at all when looked at up close; they are actually very colorful,” explains Bosman. “They only appear black to us because we look at them from far away, where over a large area all the different colors have been absorbed.”

These effects caused by the SPPs occur at the sub-micron level. For this reason, conventional optical imaging methods do not offer the resolution necessary to view SPPs directly. In response, the team used imaging techniques based on electron beams. By firing electrons at the surface and measuring the energy that they lose during their interaction with the material, Bosman and his team were able to calculate the energy required to create a SPP, and from this they could infer the wavelength of light that it would absorb.

The researchers scanned their electron beam across both gold and silver films, which enabled them to generate a two-dimensional map showing both the wavelength of light absorbed at a particular point as well as the local surface geometry (see image). The varying shape and size of the nanopores gave rise to SPPs that absorb light at a wide range of wavelengths.

The concept could lead to improved power conversion efficiency in photovoltaic devices. “These results show that it is possible to design the color of a gold or silver film,” says Bosman. “It will, for example, be possible to more efficiently absorb the energy of sunlight, by tuning the light absorption of the gold or silver to that of the solar spectrum.”

The A*STAR-affiliated researchers contributing to this research are from the Institute for Materials Research and Engineering
Associated links
http://www.research.a-star.edu.sg/research/6507
Journal information
Bosman, M., Anstis, G. R., Keast, V. J., Clarke, J. D. & Cortie, M. B. Light splitting in nanoporous gold and silver. ACS Nano 6, 319–326 (2012).

A*STAR Research | Research asia research news
Further information:
http://www.a-star.edu.sg
http://www.researchsea.com

More articles from Materials Sciences:

nachricht Synthesis of helical ladder polymers
21.05.2019 | Kanazawa University

nachricht Ultra-thin superlattices from gold nanoparticles for nanophotonics
21.05.2019 | Heinrich-Heine University Duesseldorf

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

Im Focus: A step towards probabilistic computing

Working group led by physicist Professor Ulrich Nowak at the University of Konstanz, in collaboration with a team of physicists from Johannes Gutenberg University Mainz, demonstrates how skyrmions can be used for the computer concepts of the future

When it comes to performing a calculation destined to arrive at an exact result, humans are hopelessly inferior to the computer. In other areas, humans are...

Im Focus: Recording embryonic development

Scientists develop a molecular recording tool that enables in vivo lineage tracing of embryonic cells

The beginning of new life starts with a fascinating process: A single cell gives rise to progenitor cells that eventually differentiate into the three germ...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Synthesis of helical ladder polymers

21.05.2019 | Materials Sciences

Ultra-thin superlattices from gold nanoparticles for nanophotonics

21.05.2019 | Materials Sciences

Chaperones keep the tumor suppressor protein p53 in check: How molecular escorts help prevent cancer

21.05.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>