Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Old mining techniques make a new way to recycle lithium batteries

03.08.2018

Lei Pan's team of chemical engineering students had worked long and hard on their research project, and they were happy just to be showing their results at the People, Prosperity and the Planet (P3) competition last April in Washington, DC. What they didn't expect was to be mobbed by enthusiastic onlookers.

"We got a lot of 'oh wow!' responses, from eight-year-olds wanting to know how it worked to EPA officials wondering why no one had done this before," says senior Zachary Oldenburg. "My response to the EPA was, 'Because no one else had a project leader who's a mining engineer.'"


Using 100-year-old minerals processing methods, chemical engineering students have found a solution to a looming 21st-century problem: how to economically recycle lithium ion batteries.

Credit: Lei Pan, Michigan Tech

Pan, an assistant professor of chemical engineering at Michigan Technological University, earned his graduate degrees in mining engineering. It was his idea to adapt 20th century mining technology to recycle lithium ion batteries, from the small ones in cell phones to the multi-kilowatt models that power electric cars. Pan figured the same technologies used to separate metal from ore could be applied to spent batteries. So he gave his students a crash course in basic minerals processing methods and set them loose in the lab.

"My mind goes back to the beginning, when nothing was working," says Trevyn Payne, a chemical engineering senior. "A lot of times it was, honestly, 'Let's just try this.' Sometimes when things worked out, it was kind of an accident."

Oldenburg provides an example. "We were trying all kinds of solvents to liberate chemicals, and after hours and hours, we found out that plain water worked the best."

But eventually, everything came together. "You can see your results improve experiment by experiment," explains doctoral student Ruiting Zhan. "That's pretty good. It gives you a sense of achievement."

The team used mining industry technologies to separate everything in the battery: the casing, metal foils and coatings for the anode and cathode, which includes lithium metal oxide, the most valuable part. The components can be returned to the manufacturer and re-made into new batteries.

"The biggest advantage of our process is that it's inexpensive and energy efficient." Ruitang Zhan

"For the purpose of remanufacturing, our recycled materials are as good as virgin materials, and they are cheaper," Oldenburg adds.

The fact that their process is tried and true is perhaps its most attractive quality to industry, Pan notes. "We saw the opportunity to use an existing technology to address emerging challenges," he says. "We use standard gravity separations to separate copper from aluminum, and we use froth flotation to recover critical materials, including graphite, lithium and cobalt. These mining technologies are the cheapest available, and the infrastructure to implement them already exists."

Passers-by weren't the only ones at the P3 competition impressed by the students' effort. AIChE's (the American Institute of Chemical Engineers) Youth Council on Sustainable Science and Technology (YCOSST) has announced it will be presenting the team its YCOSST P3 Award, which recognizes the project "that best employs sustainable practices, interdisciplinary collaborations, engineering principles and youth involvement, and whose design is simple enough to have a sustainable impact without requiring significant technical expertise of its users."

###

The team members, including Oldenburg, Payne, Zhan and undergraduate Lucille Nunneley, will be given the award in October, at the AIChE annual meeting in Pittsburgh, where they will also present their results. The award includes $1,000 to help cover student travel costs.

To advance their research, Pan has received funding from the Michigan Technological University Translational Research and Commercialization (MTRAC) statewide Innovation Hub.

The project was funded by a $15,000 grant from the Environmental Protection Agency and an article on their work, "Recovery of Active Cathode Materials from Lithium-Ion Batteries Using Froth Flotation," authored by Pan, Zhan and Oldenburg, was published online June 15 in Sustainable Materials and Technologies.

Media Contact

Allison Mills
awmills@mtu.edu
906-487-2343

 @michigantech

http://www.mtu.edu 

Allison Mills | EurekAlert!
Further information:
https://www.mtu.edu/unscripted/stories/2018/august/teaching-old-tech-new-tricks.html
http://dx.doi.org/10.1016/j.susmat.2018.e00062

More articles from Materials Sciences:

nachricht 3D inks that can be erased selectively
16.08.2018 | Karlsruher Institut für Technologie (KIT)

nachricht Designing Nanocrystals for more efficient Optoelectronics
16.08.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Staying in Shape

16.08.2018 | Life Sciences

Diving robots find Antarctic seas exhale surprising amounts of carbon dioxide in winter

16.08.2018 | Earth Sciences

Protein droplets keep neurons at the ready and immune system in balance

16.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>