Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Oddball enzyme provides easy path to synthetic biomaterials

17.05.2017

Materials scientists have written the recipe on how to use an oddball enzyme to build new biomaterials out of DNA. The work provides instructions for researchers the world over to build self-assembling molecules for applications ranging from drug delivery to nanowires.

The molecular machinery of the human body typically relies on genetic templates to carry out construction. For example, molecular machines called DNA polymerases read DNA base-by-base to build accurate copies.


New recipe uses overlooked DNA builder to simplify production of synthetic biomaterials for applications ranging from drug delivery to nanowires.

Credit: Stefan Zauscher, Duke University

There are, however, a few black sheep in the world of molecular biology that do not require a template. One such outlier, called terminal deoxynucleotidyl transferase (TdT), works in the immune system and catalyzes the template-free addition of nucleotides--the building blocks of DNA -- to a single-stranded DNA.

Seemingly random nucleotide sequences in a single DNA strand wouldn't seem to have much of a biological use -- but materials scientists have figured out what to do with it.

In a new paper, Duke University researchers build on their previous work and now describe in detail how the TdT enzyme can produce precise, high molecular weight, synthetic biomolecular structures much more easily than current methods.

Researchers can tailor synthesis to create single-stranded DNA that self-assemble into ball-like containers for drug delivery or to incorporate unnatural nucleotides to provide access to a wide range of medically useful abilities.

The results appear online on May 15, 2017 in the journal Angewandte Chemie International Edition.

"We're the first to show how TdT can build highly controlled single strands of DNA that can self-assemble into larger structures," said Stefan Zauscher, the Sternberg Family Professor of Mechanical Engineering and Materials Science at Duke University. "Similar materials can already be made, but the process is long and complicated, requiring multiple reactions. We can do it in a fraction of the time in a single pot."

TdT has advantage over typical, synthetic chain-building reactions in that it continues to add nucleotides to the end of the growing chain as long as they are available. This opens a vast design space to materials scientists.

Because the enzymes all work at the same pace and never stop, the resulting strands of DNA are all very close in size to each other--an important trait for controlling their mechanical properties. The never-ending process also means that researchers can force-feed TdT any nucleotide they want -- even unnatural ones -- simply by providing no other options.

"Your body makes strands of DNA out of only four nucleotides -- adenine, guanine, cytosine and uracil," said Chilkoti, the Alan L. Kaganov Professor and chair of the department of biomedical engineering at Duke. "But we can create synthetic nucleotides and force the enzyme to incorporate them. This opens many doors in making DNA-based polymers for different applications."

For example, unnatural nucleotides can incorporate molecules designed to facilitate "click chemistry" -- enabling the attachment of a whole suite of biomolecules. Researchers can also start the building process with a foundation made of a specific DNA sequence, called an aptamer, which can target specific proteins and cells.

"This enzyme has been around for decades, but this is the first time somebody has mapped these concepts into a blueprint for synthesizing a whole new family of polynucleotides," said Zauscher. "In the past, biochemists have largely been interested in what TdT does in the human immunological system and how it does it. We don't care about all of that, we're just interested in what material building blocks we can make with it. And the precision with which we can make polymers with this enzyme is actually quite exceptional."

###

This work was supported by the National Science Foundation (DMR-1411126 and DMR-1121107).

"High Molecular Weight Polynucleotides by Transferase-Catalyzed Living Chain-Growth Polycondensation." Lei Tang, Luis A. Navarro Jr., Ashutosh Chilkoti, and Stefan Zauscher. Angewandte Chemie, 2017. DOI: 10.1002/anie.201700991

Media Contact

Ken Kingery
ken.kingery@duke.edu
919-660-8414

 @DukeU

http://www.duke.edu 

Ken Kingery | EurekAlert!

More articles from Materials Sciences:

nachricht Brilliant glow of paint-on semiconductors comes from ornate quantum physics
17.01.2019 | Georgia Institute of Technology

nachricht Viennese scientists develop promising new type of polymers
15.01.2019 | Vienna University of Technology

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Elucidating the Atomic Mechanism of Superlubricity

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated...

Im Focus: Mission completed – EU partners successfully test new technologies for space robots in Morocco

Just in time for Christmas, a Mars-analogue mission in Morocco, coordinated by the Robotics Innovation Center of the German Research Center for Artificial Intelligence (DFKI) as part of the SRC project FACILITATORS, has been successfully completed. SRC, the Strategic Research Cluster on Space Robotics Technologies, is a program of the European Union to support research and development in space technologies. From mid-November to mid-December 2018, a team of more than 30 scientists from 11 countries tested technologies for future exploration of Mars and Moon in the desert of the Maghreb state.

Close to the border with Algeria, the Erfoud region in Morocco – known to tourists for its impressive sand dunes – offered ideal conditions for the four-week...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

A new twist on a mesmerizing story

17.01.2019 | Physics and Astronomy

Brilliant glow of paint-on semiconductors comes from ornate quantum physics

17.01.2019 | Materials Sciences

Drones shown to make traffic crash site assessments safer, faster and more accurate

17.01.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>