Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NUST MISIS scientists manage to observe the inner structure of photonic crystals

10.01.2018

NUST MISIS scientists in cooperation with international colleagues have managed to observe the inner structure of photonic crystals, the most promising materials of the 21st century; the work is published in the Small journal

With the help of electronic microcopy, scientists have managed to track defects in the surface of two-dimensional photonic crystals, but there was a problem with bulk photonic crystals. There was no way for scientists to research the inner parts of these unusual crystals, in which the order occurred at a tenth of a nanometer, or even in substances -- the order arose at a tenth and a hundredth of a nanometer. Hence, scientists have been searching for a method to better measure these crystals for some time.


This is the scheme of analysis of photonic crystals' inner structure with the help of ptychography.

Credit: ©NUST MISIS

"Ilya Besedin, an engineer from the NUST MISIS Laboratory of Superconducting Metamaterials, jointly with a group of scientists from Germany, the Netherlands, and Russia, for the first time, has demonstrated that there is a method of non-destructive analysis of the inner structure of the substance, which cannot be seen with the use of conventional X-rays. The new system will help to create microprocessors for optical computers. It`s not a coincidence that the work was published in Small journal, one of the most cited journals in the field of biotechnologies, biomaterials, and interdisciplinary engineering", said Alevtina Chernikova, Rector of NUST MISIS.

As Ilya Besedin stated, their research group led by Professor Ivan Vartanyants from MEPhI has applied the recently developed method of ptychographic to photonic crystals. The method's essence is that the substance is illuminated by x-ray radiation of an exactly defined wave (coherent). Sources of such radiation are called synchrotrons, and their experiments were conducted during the third generation synchrotron commissioned to research particle physics in Germany (DESY).

"With conventional x-rays you can scan either macroscopic or very ordered structures. In our case, for structures of polystyrene spheres of an almost micron size, the accuracy of the image will be even worse than in fluoroscopy. At least, it won`t be possible to discern a single object [smaller] than a micron", said Ilya Besedin.

Comparing fire and led is a good analogy to understand the difference in the quality of conventional x-rays and synchrotron. Fire ignites in a wide range of frequencies while led ignites on a strictly determined frequency and in a given direction. Thanks to such a high quality x-ray, Ilya Besedin and his colleagues have managed to "observe" through the mesoscopic structure the structures of substances where the sequence is found only at a distance of tens and hundreds of nanometers. Most importantly, scientists have managed to identify internal defects of mesoscopic structures.

As Ilya Besedin explained, if the crystal is perfect, the beam can pass through or be reflected. However, because of defects, the beam might deviate from a straight line.

"By knowing information about packaging defects, we can understand the logic through which the beam changes its direction. This means we can try to collect logical designs based on photonic crystals. Another thing is that we are not able to control the formation of these defects, we can only try to reduce [the defects] at the macro level", explained Besedin.

"A photonic crystal is like a waveguide for the light, only better. The waveguide is almost impossible to bend, and it's impossible to create photonic microchips on waveguides. A photonic crystal is most suitable for the creation of integral optical microchips where the light can spread where the developers need it to", noted Ilya Besedin.

According to him this is why the main value of this work is in the analysis of photonic crystals` inner structure with the help of ptychography.

"We have shown that now, with the help of x-rays, we can observe defects in periodic mesoscopic structures. The next stage of specification is to expose these structures to radiation with an x-ray laser. This can give a more accurate picture of the internal structure, but there are also some difficulties. The laser beam is, by definition, more powerful than just an outgoing one from synchrotron. While increasing the power, the probability of destroying the investigated structure increases significantly, which is not [good]. Ptychography also allows researchers to study the inner structure of a crystal without destroying it. That is why such a method will definitely find its application", Besedin concluded.

Media Contact

Lyudmila Dozhdikova
soboleva.lyudmila@gmail.com
7-495-647-2309

http://en.misis.ru/ 

Lyudmila Dozhdikova | EurekAlert!

More articles from Materials Sciences:

nachricht Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern
20.07.2018 | Princeton University

nachricht Relax, just break it
20.07.2018 | DOE/Argonne National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>