Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NUST MISIS scientists manage to observe the inner structure of photonic crystals

10.01.2018

NUST MISIS scientists in cooperation with international colleagues have managed to observe the inner structure of photonic crystals, the most promising materials of the 21st century; the work is published in the Small journal

With the help of electronic microcopy, scientists have managed to track defects in the surface of two-dimensional photonic crystals, but there was a problem with bulk photonic crystals. There was no way for scientists to research the inner parts of these unusual crystals, in which the order occurred at a tenth of a nanometer, or even in substances -- the order arose at a tenth and a hundredth of a nanometer. Hence, scientists have been searching for a method to better measure these crystals for some time.


This is the scheme of analysis of photonic crystals' inner structure with the help of ptychography.

Credit: ©NUST MISIS

"Ilya Besedin, an engineer from the NUST MISIS Laboratory of Superconducting Metamaterials, jointly with a group of scientists from Germany, the Netherlands, and Russia, for the first time, has demonstrated that there is a method of non-destructive analysis of the inner structure of the substance, which cannot be seen with the use of conventional X-rays. The new system will help to create microprocessors for optical computers. It`s not a coincidence that the work was published in Small journal, one of the most cited journals in the field of biotechnologies, biomaterials, and interdisciplinary engineering", said Alevtina Chernikova, Rector of NUST MISIS.

As Ilya Besedin stated, their research group led by Professor Ivan Vartanyants from MEPhI has applied the recently developed method of ptychographic to photonic crystals. The method's essence is that the substance is illuminated by x-ray radiation of an exactly defined wave (coherent). Sources of such radiation are called synchrotrons, and their experiments were conducted during the third generation synchrotron commissioned to research particle physics in Germany (DESY).

"With conventional x-rays you can scan either macroscopic or very ordered structures. In our case, for structures of polystyrene spheres of an almost micron size, the accuracy of the image will be even worse than in fluoroscopy. At least, it won`t be possible to discern a single object [smaller] than a micron", said Ilya Besedin.

Comparing fire and led is a good analogy to understand the difference in the quality of conventional x-rays and synchrotron. Fire ignites in a wide range of frequencies while led ignites on a strictly determined frequency and in a given direction. Thanks to such a high quality x-ray, Ilya Besedin and his colleagues have managed to "observe" through the mesoscopic structure the structures of substances where the sequence is found only at a distance of tens and hundreds of nanometers. Most importantly, scientists have managed to identify internal defects of mesoscopic structures.

As Ilya Besedin explained, if the crystal is perfect, the beam can pass through or be reflected. However, because of defects, the beam might deviate from a straight line.

"By knowing information about packaging defects, we can understand the logic through which the beam changes its direction. This means we can try to collect logical designs based on photonic crystals. Another thing is that we are not able to control the formation of these defects, we can only try to reduce [the defects] at the macro level", explained Besedin.

"A photonic crystal is like a waveguide for the light, only better. The waveguide is almost impossible to bend, and it's impossible to create photonic microchips on waveguides. A photonic crystal is most suitable for the creation of integral optical microchips where the light can spread where the developers need it to", noted Ilya Besedin.

According to him this is why the main value of this work is in the analysis of photonic crystals` inner structure with the help of ptychography.

"We have shown that now, with the help of x-rays, we can observe defects in periodic mesoscopic structures. The next stage of specification is to expose these structures to radiation with an x-ray laser. This can give a more accurate picture of the internal structure, but there are also some difficulties. The laser beam is, by definition, more powerful than just an outgoing one from synchrotron. While increasing the power, the probability of destroying the investigated structure increases significantly, which is not [good]. Ptychography also allows researchers to study the inner structure of a crystal without destroying it. That is why such a method will definitely find its application", Besedin concluded.

Media Contact

Lyudmila Dozhdikova
soboleva.lyudmila@gmail.com
7-495-647-2309

http://en.misis.ru/ 

Lyudmila Dozhdikova | EurekAlert!

More articles from Materials Sciences:

nachricht Barely scratching the surface: A new way to make robust membranes
13.12.2018 | DOE/Argonne National Laboratory

nachricht Topological material switched off and on for the first time
11.12.2018 | ARC Centre of Excellence in Future Low-Energy Electronics Technologies

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Data use draining your battery? Tiny device to speed up memory while also saving power

14.12.2018 | Power and Electrical Engineering

Tangled magnetic fields power cosmic particle accelerators

14.12.2018 | Physics and Astronomy

In search of missing worlds, Hubble finds a fast evaporating exoplanet

14.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>