Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel sensors could enable smarter textiles

17.08.2018

University of Delaware engineers use carbon nanotube composite coatings

A team of engineers at the University of Delaware is developing next-generation smart textiles by creating flexible carbon nanotube composite coatings on a wide range of fibers, including cotton, nylon and wool. Their discovery is reported in the journal ACS Sensors where they demonstrate the ability to measure an exceptionally wide range of pressure - from the light touch of a fingertip to being driven over by a forklift.


Sagar Doshi (left) and Erik Thostenson test an elbow sleeve outfitted with one of their novel sensors.

Credit: Photo by Kathy F. Atkinson

Fabric coated with this sensing technology could be used in future "smart garments" where the sensors are slipped into the soles of shoes or stitched into clothing for detecting human motion.

Carbon nanotubes give this light, flexible, breathable fabric coating impressive sensing capability. When the material is squeezed, large electrical changes in the fabric are easily measured.

"As a sensor, it's very sensitive to forces ranging from touch to tons," said Erik Thostenson, an associate professor in the Departments of Mechanical Engineering and Materials Science and Engineering.

Nerve-like electrically conductive nanocomposite coatings are created on the fibers using electrophoretic deposition (EPD) of polyethyleneimine functionalized carbon nanotubes.

"The films act much like a dye that adds electrical sensing functionality," said Thostenson. "The EPD process developed in my lab creates this very uniform nanocomposite coating that is strongly bonded to the surface of the fiber. The process is industrially scalable for future applications."

Now, researchers can add these sensors to fabric in a way that is superior to current methods for making smart textiles. Existing techniques, such as plating fibers with metal or knitting fiber and metal strands together, can decrease the comfort and durability of fabrics, said Thostenson, who directs UD's Multifunctional Composites Laboratory. The nanocomposite coating developed by Thostenson's group is flexible and pleasant to the touch and has been tested on a range of natural and synthetic fibers, including Kevlar, wool, nylon, Spandex and polyester. The coatings are just 250 to 750 nanometers thick -- about 0.25 to 0.75 percent as thick as a piece of paper -- and would only add about a gram of weight to a typical shoe or garment. What's more, the materials used to make the sensor coating are inexpensive and relatively eco-friendly, since they can be processed at room temperature with water as a solvent.

Exploring Future Applications

One potential application of the sensor-coated fabric is to measure forces on people's feet as they walk. This data could help clinicians assess imbalances after injury or help to prevent injury in athletes. Specifically, Thostenson's research group is collaborating with Jill Higginson, professor of mechanical engineering and director of the Neuromuscular Biomechanics Lab at UD, and her group as part of a pilot project funded by Delaware INBRE. Their goal is to see how these sensors, when embedded in footwear, compare to biomechanical lab techniques such as instrumented treadmills and motion capture.

During lab testing, people know they are being watched, but outside the lab, behavior may be different.

"One of our ideas is that we could utilize these novel textiles outside of a laboratory setting -- walking down the street, at home, wherever," said Thostenson.

Sagar Doshi, a doctoral student in mechanical engineering at UD, is the lead author on the paper. He worked on making the sensors, optimizing their sensitivity, testing their mechanical properties and integrating them into sandals and shoes. He has worn the sensors in preliminary tests, and so far, the sensors collect data that compares with that collected by a force plate, a laboratory device that typically costs thousands of dollars.

"Because the low-cost sensor is thin and flexible the possibility exists to create custom footwear and other garments with integrated electronics to store data during their day-to-day lives," Doshi said. "This data could be analyzed later by researchers or therapists to assess performance and ultimately bring down the cost of healthcare."

This technology could also be promising for sports medicine applications, post-surgical recovery, and for assessing movement disorders in pediatric populations.

"It can be challenging to collect movement data in children over a period of time and in a realistic context," said Robert Akins, Director of the Center for Pediatric Clinical Research and Development at the Nemours - Alfred I. duPont Hospital for Children in Wilmington and affiliated professor of materials science and engineering, biomedical engineering and biological sciences at UD. "Thin, flexible, highly sensitive sensors like these could help physical therapists and doctors assess a child's mobility remotely, meaning that clinicians could collect more data, and possibly better data, in a cost-effective way that requires fewer visits to the clinic than current methods do."

Interdisciplinary collaboration is essential for the development of future applications, and at UD, engineers have a unique opportunity to work with faculty and students from the College of Health Sciences on UD's Science, Technology and Advanced Research (STAR) Campus.

"As engineers, we develop new materials and sensors but we don't always understand the key problems that doctors, physical therapists and patients are facing," said Doshi. "We collaborate with them to work on the problems they are facing and either direct them to an existing solution or create an innovative solution to solve that problem."

Thostenson's research group also uses nanotube-based sensors for other applications, such as structural health monitoring.

"We've been working with carbon nanotubes and nanotube-based composite sensors for a long time," said Thostenson, who is affiliated faculty at UD's Center for Composite Materials (UD-CCM). Working with researchers in civil engineering his group has pioneered the development of flexible nanotube sensors to help detect cracks in bridges and other types of large-scale structures. "One of the things that has always intrigued me about composites is that we design them at varying lengths of scale, all the way from the macroscopic part geometries, an airplane or an airplane wing or part of a car, to the fabric structure or fiber level. Then, the nanoscale reinforcements like carbon nanotubes and graphene give us another level to tailor the material structural and functional properties. Although our research may be fundamental, there is always an eye towards applications. UD-CCM has a long history of translating fundamental research discoveries in the laboratory to commercial products through UD-CCM's industrial consortium."

###

This work was supported by the U.S. National Science Foundation (NSF) CAREER Program and the Delaware INBRE program with a grant from NIH-NIGMS (P20-GM103446) and the State of Delaware.

Media Contact

Peter Kerwin
pgkerwin@udel.edu
302-509-5327

 @UDResearch

http://www.udel.edu 

Peter Kerwin | EurekAlert!
Further information:
https://www.udel.edu/udaily/2018/august/smart-textiles-nanotube-sensors/

More articles from Materials Sciences:

nachricht From foam to bone: Plant cellulose can pave the way for healthy bone implants
19.03.2019 | University of British Columbia

nachricht Additive printing processes for flexible touchscreens: increased materials and cost efficiency
19.03.2019 | INM - Leibniz-Institut für Neue Materialien gGmbH

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Solving the efficiency of Gram-negative bacteria

22.03.2019 | Life Sciences

Bacteria bide their time when antibiotics attack

22.03.2019 | Life Sciences

Open source software helps researchers extract key insights from huge sensor datasets

22.03.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>