Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel nano material for quantum electronics

11.09.2018

A new 2D material based upon research at DTU Chemistry has vast perspectives

An international team led by Assistant Professor Kasper Steen Pedersen, DTU Chemistry, has synthesized a novel nano material with electrical and magnetic properties making it suitable for future quantum computers and other applications in electronics.


The use of redox-active organic molecules and magnetic metal ions as molecular building blocks for materials represents a new strategy towards novel types of 2D materials exhibiting both high electronic conductivity and magnetic order.

Credit: Kasper Steen Pedersen and We Love People.


The use of redox-active organic molecules and magnetic metal ions as molecular building blocks for materials represents a new strategy towards novel types of 2D materials exhibiting both high electronic conductivity and magnetic order.

Credit: Kasper Steen Pedersen and We Love People.

Chromium-Chloride-Pyrazine (chemical formula CrCl2(pyrazine)2) is a layered material, which is a precursor for a so-called 2D material. In principle, a 2D material has a thickness of just a single molecule and this often leads to properties very different from those of the same material in a normal 3D version. Not least will the electrical properties differ.

While in a 3D material, electrons are able to take any direction, in a 2D material they will be restricted to moving horizontally - as long as the wavelength of the electron is longer than the thickness of the 2D layer.

Organic/inorganic hybrid

Graphene is the most well-known 2D material. Graphene consists of carbon atoms in a lattice structure, which yields it remarkable strength. Since the first synthesis of graphene in 2004, hundreds of other 2D materials have been synthesized, some of which may be candidates for quantum electronics applications.

However, the novel material is based on a very different concept. While the other candidates are all inorganic - just like graphene - Chromium-Chloride-Pyrazine is an organic/inorganic hybrid material.

"The material marks a new type of chemistry, in which we are able to replace various building blocks in the material and thereby modify its physical and chemical properties. This can not be done in graphene. For example, one can't choose to replace half the carbon atoms in graphene with another kind of atoms. Our approach allows designing properties much more accurately than known in other 2D materials," Kasper Steen Pedersen explains.

Besides the electrical properties, also the magnetic properties in Chromium-Chloride-Pyrazine can be accurately designed. This is especially relevant in relation to "spintronics".

"While in normal electronics, only the charge of the electrons is utilized, also their spin - which is a quantum mechanical property - is used in spintronics. This is highly interesting for quantum computing applications. Therefore, development of nano-scale materials which are both conducting and magnetic is most relevant," Kasper Steen Pedersen notes.

A new world of 2D materials

Besides for quantum computing, Chromium-Chloride-Pyrazine may be of interest in future superconductors, catalysts, batteries, fuel cells, and electronics in general.

Still, companies are not keen to begin producing the material right away, the researcher stresses: "Not yet, at least! This is still fundamental research. Since we are suggesting a material synthesized from an entirely novel approach, a number of questions remain unanswered. For instance, we are not yet able to determine the degree of stability of the material in various applications. However, even if Chromium-Chloride-Pyrazine should for some reason prove unfit for the various possible applications, the new principles behind its synthesis will still be relevant. This is the door to a new world of more advanced 2D materials opening up."

Media Contact

Kasper Steen Pedersen
kastp@kemi.dtu.dk
452-360-4067

 @DTUtweet

http://www.dtu.dk 

Kasper Steen Pedersen | EurekAlert!
Further information:
http://dx.doi.org/10.1038/s41557-018-0107-7

More articles from Materials Sciences:

nachricht To improve auto coatings, new tests do more than scratch the surface
21.09.2018 | National Institute of Standards and Technology (NIST)

nachricht World's first passive anti-frosting surface fights ice with ice
18.09.2018 | Virginia Tech

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Patented nanostructure for solar cells: Rough optics, smooth surface

Thin-film solar cells made of crystalline silicon are inexpensive and achieve efficiencies of a good 14 percent. However, they could do even better if their shiny surfaces reflected less light. A team led by Prof. Christiane Becker from the Helmholtz-Zentrum Berlin (HZB) has now patented a sophisticated new solution to this problem.

"It is not enough simply to bring more light into the cell," says Christiane Becker. Such surface structures can even ultimately reduce the efficiency by...

Im Focus: New soft coral species discovered in Panama

A study in the journal Bulletin of Marine Science describes a new, blood-red species of octocoral found in Panama. The species in the genus Thesea was discovered in the threatened low-light reef environment on Hannibal Bank, 60 kilometers off mainland Pacific Panama, by researchers at the Smithsonian Tropical Research Institute in Panama (STRI) and the Centro de Investigación en Ciencias del Mar y Limnología (CIMAR) at the University of Costa Rica.

Scientists established the new species, Thesea dalioi, by comparing its physical traits, such as branch thickness and the bright red colony color, with the...

Im Focus: New devices based on rust could reduce excess heat in computers

Physicists explore long-distance information transmission in antiferromagnetic iron oxide

Scientists have succeeded in observing the first long-distance transfer of information in a magnetic group of materials known as antiferromagnets.

Im Focus: Finding Nemo's genes

An international team of researchers has mapped Nemo's genome

An international team of researchers has mapped Nemo's genome, providing the research community with an invaluable resource to decode the response of fish to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

"Boston calling": TU Berlin and the Weizenbaum Institute organize a conference in USA

21.09.2018 | Event News

One of the world’s most prominent strategic forums for global health held in Berlin in October 2018

03.09.2018 | Event News

4th Intelligent Materials - European Symposium on Intelligent Materials

27.08.2018 | Event News

 
Latest News

Astrophysicists measure precise rotation pattern of sun-like stars for the first time

21.09.2018 | Physics and Astronomy

Brought to light – chromobodies reveal changes in endogenous protein concentration in living cells

21.09.2018 | Life Sciences

"Boston calling": TU Berlin and the Weizenbaum Institute organize a conference in USA

21.09.2018 | Event News

VideoLinks
Science & Research
Overview of more VideoLinks >>>