Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel 3-D printing technique yields high-performance composites

16.01.2018

Arranging fibers just like nature does it

Nature has produced exquisite composite materials--wood, bone, teeth, and shells, for example--that combine light weight and density with desirable mechanical properties such as stiffness, strength and damage tolerance.


Rotational 3-D printing precisely choreographs the speed and rotation of a 3-D printer nozzle to program the arrangement of embedded fibers in polymer matrices. This is achieved by equipping a rotational printhead system with a stepper motor to guide the angular velocity of the rotating nozzle as the ink is extruded.

Credit: Brett Compton/SEAS

Since ancient civilizations first combined straw and mud to form bricks, people have fabricated engineered composites of increasing performance and complexity. But reproducing the exceptional mechanical properties and complex microstructures found in nature has been challenging.

Now, a team of researchers at the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) has demonstrated a novel 3D printing method that yields unprecedented control of the arrangement of short fibers embedded in polymer matrices. They used this additive manufacturing technique to program fiber orientation within epoxy composites in specified locations, enabling the creation of structural materials that are optimized for strength, stiffness, and damage tolerance.

Their method, referred to as "rotational 3D printing," could have broad ranging applications. Given the modular nature of their ink designs, many different filler and matrix combinations can be implemented to tailor electrical, optical, or thermal properties of the printed objects.

"Being able to locally control fiber orientation within engineered composites has been a grand challenge," said the study's senior author, Jennifer A. Lewis, Hansjorg Wyss Professor of Biologically Inspired Engineering at Harvard SEAS. "We can now pattern materials in a hierarchical manner, akin to the way that nature builds." Lewis is also a Core Faculty Member of the Wyss Institute for Biologically Inspired Engineering at Harvard.

The work, described in the journal PNAS, was carried out in the Lewis lab at Harvard. Collaborators included then-postdoctoral fellows Brett Compton (now Assistant Professor in Mechanical Engineering at the University of Tennessee, Knoxville), and Jordan Raney (now Assistant Professor of Mechanical Engineering and Applied Mechanics at the University of Pennsylvania); and visiting PhD student Jochen Mueller from Prof. Kristina Shea's lab at ETH Zurich.

The key to their approach is to precisely choreograph the speed and rotation of a 3D printer nozzle to program the arrangement of embedded fibers in polymer matrices. This is achieved by equipping a rotational printhead system with a stepper motor to guide the angular velocity of the rotating nozzle as the ink is extruded.

"Rotational 3D printing can be used to achieve optimal, or near optimal, fiber arrangements at every location in the printed part, resulting in higher strength and stiffness with less material," Compton said. "Rather than using magnetic or electric fields to orient fibers, we control the flow of the viscous ink itself to impart the desired fiber orientation."

Compton noted that the team's nozzle concept could be used on any material extrusion printing method, from fused filament fabrication, to direct ink writing, to large-scale thermoplastic additive manufacturing, and with any filler material, from carbon and glass fibers to metallic or ceramic whiskers and platelets.

The technique allows for the 3D printing of engineered materials that can be spatially programmed to achieve specific performance goals. For example, the orientation of the fibers can be locally optimized to increase the damage tolerance at locations that would be expected to undergo the highest stress during loading, hardening potential failure points.

"One of the exciting things about this work is that it offers a new avenue to produce complex microstructures, and to controllably vary the microstructure from region to region," Raney said. "More control over structure means more control over the resulting properties, which vastly expands the design space that can be exploited to optimize properties further."

"Biological composite materials often have remarkable mechanical properties: high stiffness and strength per unit weight and high toughness. One of the outstanding challenges of designing engineering materials inspired by biological composites is control of fiber orientation at small length scales and at the local level," said Lorna J. Gibson, Professor of Materials Science and Engineering at MIT, who was not involved in the research. "This remarkable paper from the Lewis group demonstrates a way of doing just that. This represents a huge leap forward in the design of bio-inspired composites."

###

The Harvard Office of Technology Development has protected the intellectual property relating to this project.

Previously, Lewis has conducted groundbreaking research in the 3D printing of tissue constructs with vasculature, lithium-ion microbatteries, and the first autonomous, entirely soft robot.

Other contributors to the paper include Thomas Ober from Harvard SEAS and Kristina Shea from ETH Zurich.

The research was supported by the Office of Naval Research and GETTYLAB.

Media Contact

Paul Karoff
karoff@seas.harvard.edu
617-496-0450

 @hseas

http://www.seas.harvard.edu/ 

Paul Karoff | EurekAlert!

Further reports about: 3-D printing Applied Sciences fiber mechanical properties stiffness

More articles from Materials Sciences:

nachricht Barely scratching the surface: A new way to make robust membranes
13.12.2018 | DOE/Argonne National Laboratory

nachricht Topological material switched off and on for the first time
11.12.2018 | ARC Centre of Excellence in Future Low-Energy Electronics Technologies

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Data use draining your battery? Tiny device to speed up memory while also saving power

14.12.2018 | Power and Electrical Engineering

Tangled magnetic fields power cosmic particle accelerators

14.12.2018 | Physics and Astronomy

In search of missing worlds, Hubble finds a fast evaporating exoplanet

14.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>