Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Next generation of watch springs

30.10.2018

What happens when something keeps getting smaller and smaller? This is the type of question Empa researcher Johann Michler and his team are investigating. As a by-product of their research completely novel watch springs could soon be used in Swiss timepieces.

Applied research is not always initiated by industry – but oftentimes it yields results that can swiftly be implemented by companies. A prime example can be seen on the Empa campus in Thun: Tiny watch springs are on display at the Laboratory for Mechanics of Materials and Nanostructures.


The watch springs are electroplated on a gold plated silicon wafer, coated with a light-sensitive paint.

Empa


The researchers have also managed to produce bridges and columns made of solid nickel that are merely a few micrometers in size.

Empa

These springs – the beating heart of every mechanical clock – are not your usual components. They are not made of the famous Nivarox wires, but rather deposited electrically – or, rather, electrochemically – in the desired form from a cold, aqueous saline solution.

By now, the production in the Empa lab has outgrown the first pilot tests. On a regular basis the electroplated springs are delivered to the R&D department at a major Swiss watchmaker, where they are fitted in prototype watch mechanisms. The watches run. However, there is still work to do on their accuracy and long-term stability.

Only a few years ago, Empa had to rely on partners to take care of certain process steps. Meanwhile, the knowhow for the entire production process is pooled in Michler’s lab. Laetitia Philippe, who oversees the production of the springs, explains the production steps. The base material is a silicon wafer like the ones used to produce computer chips and solar cells.

This wafer is initially coated with a conductive gold layer and, later on, a thin layer of light-sensitive paint. The shape of the spring is then projected onto it and the illuminated parts of the paint are etched out. Now the desired metallic alloy can be electroplated onto the conductive gold base.

As Philippe knows only too well, this crucial step in the process is tricky. “We need a good swirl in the galvanic bath, the right temperature, some organic additives and a current at just the right strength and – if it’s alternating current – in the right form.”

Eventually, the goal is to dissolve the springs out of the galvanic mold. Initially, the researchers use a light microscope to check whether the spring molds are filled correctly with metal. Then the top side of the mold is fine-polished to ensure all springs are of a defined thickness; the result is verified via X-ray fluorescence analysis.

Finally, the paint is removed with an oxygen plasma, the silicon wafer etched away using a strong alkaline solution and the gold coating dissolved. The remaining springs then need to go into a special washing machine for a few hours to remove any ridges and protruding metal remnants. These flawless springs then go into the watch lab for prototype production.

A by-product of research

For the researchers at Empa, however, this kind of prototype production is only one aspect of their scientific work. “Our goal is certainly not to compete with suppliers in the watch industry,” says Michler. “At Empa, we are mainly interested in the process of miniaturization itself.” Michler’s team studies the mechanical properties of the tiny parts with minuscule stamps and needles. After all, the properties of materials change if we build tiny parts: Ductile metals become harder; brittle ceramics, on the other hand, become ductile with very small component sizes.

“The prerequisite for any examination, however, is that we are able to produce the objects we are interested in based on defined criteria,” explains the Empa researcher. Thus, Michler’s team not only strives to master one single process step, but also keep a grip on the quality of the entire process chain. “Some process steps are closely intertwined,” says Michler. “If we change one parameter, such as the geometry of the electroplating molds or the composition of the alloy, we usually have to adjust the preceding and subsequent steps, too. We want to understand these connections and the effects of miniaturization in every aspect.”

Additive manufacturing in 3D

Besides two-dimensional structures, the researchers in Thun have already made progress in the production of 3D structures – also with the aid of electroplating. The required molds are not produced by illuminating layers of paint on silicon wafers, but rather via what is known as two-photon polymerization. This involves emitting a laser beam in a container with a special liquid plastic precursor. In the focal point of the beam, the liquid polymerizes and solidifies.

The Empa team succeeded in making delicate structures and electroplating them with a nickel boron coating. In strength tests, these metallized structures exhibited much more stability than the raw polymer scaffold. Meanwhile, the researchers have also managed to produce bridges and columns made of solid nickel that are merely a few micrometers in size. Stress tests reveal how the nickel alloys behave in these dimensions.

“We are already able to make such structures with a nice regularity and in a replicable manner,” says Laetitia Philippe. “We have taken a major step forward on the road towards micromechanics made of electroplated components.” In the not too distant future, these components might permit clock mechanisms with particularly fine mechanical complications.

Wissenschaftliche Ansprechpartner:

Dr. Johann Michler
Mechanics of Materials and Nanostructures
Phone +41 58 765 62 05
Johann.Michler@empa.ch

Originalpublikation:

P Schürch, L Pethö, J Schwiedrzik, J Michler, L Philippe; Additive Manufacturing through Galvanoforming of 3D Nickel Microarchitectures: Simulation‐Assisted Synthesis; Advanced Material Technologies (2018); doi: 10.1002/admt.201800274
https://onlinelibrary.wiley.com/doi/abs/10.1002/admt.201800274

Weitere Informationen:

https://www.empa.ch/web/s604/liga-watch

Rainer Klose | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

Further reports about: Empa clock coating miniaturization nanostructures silicon wafer

More articles from Materials Sciences:

nachricht Carbon-loving materials designed to reduce industrial emissions
06.07.2020 | DOE/Oak Ridge National Laboratory

nachricht Thermophones offer new route to radically simplify array design, research shows
03.07.2020 | University of Exeter

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

Im Focus: ILA Goes Digital – Automation & Production Technology for Adaptable Aircraft Production

Live event – July 1, 2020 - 11:00 to 11:45 (CET)
"Automation in Aerospace Industry @ Fraunhofer IFAM"

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM l Stade is presenting its forward-looking R&D portfolio for the first time at...

Im Focus: AI monitoring of laser welding processes - X-ray vision and eavesdropping ensure quality

With an X-ray experiment at the European Synchrotron ESRF in Grenoble (France), Empa researchers were able to demonstrate how well their real-time acoustic monitoring of laser weld seams works. With almost 90 percent reliability, they detected the formation of unwanted pores that impair the quality of weld seams. Thanks to a special evaluation method based on artificial intelligence (AI), the detection process is completed in just 70 milliseconds.

Laser welding is a process suitable for joining metals and thermoplastics. It has become particularly well established in highly automated production, for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

 
Latest News

Coupled hair cells in the inner ear – „Together we are strong!“

06.07.2020 | Health and Medicine

Innovations for sustainability in a post-pandemic future

06.07.2020 | Social Sciences

Carbon-loving materials designed to reduce industrial emissions

06.07.2020 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>