Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New test reveals purity of graphene

14.08.2014

Rice, Osaka scientists use terahertz waves to spot contaminants

Graphene may be tough, but those who handle it had better be tender. The environment surrounding the atom-thick carbon material can influence its electronic performance, according to researchers at Rice and Osaka universities who have come up with a simple way to spot contaminants.


Rice and Osaka researchers have come up with a simple method to find contaminants on atom-thick graphene. By putting graphene on a layer of indium phosphide, which emits terahertz waves when excited by a laser pulse, they can measure and map changes in its electrical conductivity. (Credit: Rice and Osaka universities)


An amplitude map of terahertz radiation emitted from graphene-coated indium phosphide shows where oxygen molecules have settled on the surface after exposure to air for a few weeks. The blue at point 1 indicates high polarization due to the adsorption of oxygen molecules, while the orange at point 2 is electronically equivalent to bare indium phosphide. The research by Rice and Osaka universities makes possible a simple way to spot contaminants on graphene. (Credit: Rice and Osaka universities)

Because it's so easy to accidently introduce impurities into graphene, labs led by physicists Junichiro Kono of Rice and Masayoshi Tonouchi of Osaka's Institute of Laser Engineering discovered a way to detect and identify out-of-place molecules on its surface through terahertz spectroscopy.

They expect the finding to be important to manufacturers considering the use of graphene in electronic devices.

The research was published this week by Nature's open-access online journal Scientific Reports. It was made possible by the Rice-based NanoJapan program, through which American undergraduates conduct summer research internships in Japanese labs.

Even a single molecule of a foreign substance can contaminate graphene enough to affect its electrical and optical properties, Kono said. Unfortunately (and perhaps ironically), that includes electrical contacts.

"Traditionally, in order to measure conductivity in a material, one has to attach contacts and then do electrical measurements," said Kono, whose lab specializes in terahertz research. "But our method is contact-less."

That's possible because the compound indium phosphide emits terahertz waves when excited. The researchers used it as a substrate for graphene. Hitting the combined material with femtosecond pulses from a near-infrared laser prompted the indium phosphide to emit terahertz back through the graphene. Imperfections as small as a stray oxygen molecule on the graphene were picked up by a spectrometer.

"The change in the terahertz signal due to adsorption of molecules is remarkable," Kono said. "Not just the intensity but also the waveform of emitted terahertz radiation totally and dynamically changes in response to molecular adsorption and desorption. The next step is to explore the ultimate sensitivity of this unique technique for gas sensing."

The technique can measure both the locations of contaminating molecules and changes over time. "The laser gradually removes oxygen molecules from the graphene, changing its density, and we can see that," Kono said.

The experiment involved growing pristine graphene via chemical vapor deposition and transferring it to an indium phosphide substrate. Laser pulses generated coherent bursts of terahertz radiation through a built-in surface electric field of the indium phosphide substrate that changed due to charge transfer between the graphene and the contaminating molecules. The terahertz wave, when visualized, reflected the change.

The experimental results are a warning for electronics manufacturers. "For any future device designs using graphene, we have to take into account the influence of the surroundings," said Kono. Graphene in a vacuum or sandwiched between noncontaminating layers would probably be stable, but exposure to air would contaminate it, he said.

The Rice and Osaka labs are continuing to collaborate on a project to measure the terahertz conductivity of graphene on various substrates, he said.

###

The paper's authors include Rice alumna Mika Tabata, who conducted research as a 2012 NanoJapan participant in the Tonouchi lab, and graduate student Minjie Wang; associate professors Iwao Kawayama and Hironaru Murakami and graduate students Yuki Sano and Khandoker Abu Salek of Osaka; and Robert Vajtai, a senior faculty fellow, and Pulickel Ajayan, the Benjamin M. and Mary Greenwood Anderson Professor in Engineering, professor of materials science and nanoengineering and of chemistry, and chair of the Department of Materials Science and NanoEngineering, both at Rice.

The National Science Foundation (NSF); the Japan Society for the Promotion of Science; the Ministry of Education, Culture, Sports, Science and Technology-Japan and the Murata Science Foundation supported the research. NanoJapan is funded by the NSF's Partnerships for International Research and Education program.

Read the abstract at http://www.nature.com/srep/2014/140813/srep06046/full/srep06046.html

This news release can be found online at http://news.rice.edu/2014/08/13/new-test-reveals-purity-of-graphene/

Follow Rice News and Media Relations via Twitter @RiceUNews

Related Materials:

Junichiro Kono Laboratory: http://www.ece.rice.edu/%7Eirlabs/

Tonouchi Lab: http://www.ile.osaka-u.ac.jp/research/thp/indexeng.html

Ajayan Research Group: http://ajayan.rice.edu

Images for download:

http://news.rice.edu/wp-content/uploads/2014/07/0804_GRAPHENE-1-WEB.jpg

Rice and Osaka researchers have come up with a simple method to find contaminants on atom-thick graphene. By putting graphene on a layer of indium phosphide, which emits terahertz waves when excited by a laser pulse, they can measure and map changes in its electrical conductivity. (Credit: Rice and Osaka universities)

http://news.rice.edu/wp-content/uploads/2014/07/0804_GRAPHENE-2-WEB.jpg

An amplitude map of terahertz radiation emitted from graphene-coated indium phosphide shows where oxygen molecules have settled on the surface after exposure to air for a few weeks. The blue at point 1 indicates high polarization due to the adsorption of oxygen molecules, while the orange at point 2 is electronically equivalent to bare indium phosphide. The research by Rice and Osaka universities makes possible a simple way to spot contaminants on graphene. (Credit: Rice and Osaka universities)

http://news.rice.edu/wp-content/uploads/2014/08/0804_GRAPHENE-3-WEB.jpg

A new test that determines the purity of graphene was developed through the Rice University-based NanoJapan program that sends American undergraduate students to Japan for summer research internships. Members of the research team at the Osaka lab of physicist Masayoshi Tonouchi include, from left, rear: Khandoker Salek, Hiroki Nishida, Iwao Kawayama, Rice alumna Mika Tabata, Yuki Sano and Hironaru Murakami; and front, Kento Mizui, Tonouchi and Kazunori Serita. (Credit: NanoJapan)

Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,920 undergraduates and 2,567 graduate students, Rice's undergraduate student-to-faculty ratio is just over 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice is highly ranked for best quality of life by the Princeton Review and for best value among private universities by Kiplinger's Personal Finance.

David Ruth | Eurek Alert!

More articles from Materials Sciences:

nachricht Novel sensors could enable smarter textiles
17.08.2018 | University of Delaware

nachricht Quantum material is promising 'ion conductor' for research, new technologies
17.08.2018 | Purdue University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Quantum material is promising 'ion conductor' for research, new technologies

17.08.2018 | Materials Sciences

Low bandwidth? Use more colors at once

17.08.2018 | Information Technology

Protecting the power grid: Advanced plasma switch for more efficient transmission

17.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>