Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New sustainable production method could advance plastics and pharmaceuticals

13.02.2018

A team of chemical engineers at The University of Texas at Austin has developed a new, cost-effective method for synthetically producing a biorenewable platform chemical called triacetic acid lactone (TAL) that can be used to produce innovative new drugs and sustainable plastics at an industrial scale, as described this week in Proceedings of the National Academy of Sciences.

Led by Hal Alper, professor in the McKetta Department of Chemical Engineering in the Cockrell School of Engineering, the team's new method involves engineering the yeast Y. lipolytica to increase production of TAL, a polyketide, to levels that far exceed current bioproduction methods.


University of Texas engineers show off their school spirit by molding the new, sustainably produced plastic material into a Longhorn silhouette in Hal Alper's lab.

Credit: Cockrell School of Engineering, The University of Texas at Austin

This was accomplished by rewiring metabolism in the yeast through synthetic biology and genetic engineering. Ultimately, the research team increased production capacity tenfold, enabling polyketides to be mass-produced for incorporation into a variety of new applications in industry.

Polyketides are an important class of naturally derived molecules that can be used to make many useful products such as nutritional supplements, specialty polymers, pigments and pharmaceuticals. Currently, there are more than 20 drugs derived from polyketides on the market, including immunosuppressants, statins and antimicrobials.

Up to this point, synthetic production of polyketides has been constrained by technical challenges, limiting practical applications for consumer- and industry-based needs. In particular, most technologies have limited product yields resulting in difficult chemical synthesis and poor economics. The UT Austin team's breakthrough could change that.

Using their new method, the researchers were able to purify TAL directly from a bioreactor to make a new plastic material that can be formed into a film and is seen to exhibit an orange hue and relative transparency.

"We hope to open up new product and industrial opportunities in the chemical and pharmaceutical spaces," Alper said. "Our engineering efforts in TAL showcase that we can rewire metabolism to create renewable solutions to traditional chemical manufacturing."

The UT Austin Office of Technology Commercialization has filed U.S. patent applications for the technology and is working to secure worldwide patents. The office is seeking commercial partners who have interest in improving the economics of polyketide production or creating new materials or products from polyketides.

"An important role for our institution, as one of the nation's leading public research universities, is to move UT Austin's research from the laboratory to useful products and services for the marketplace," said Dan Sharp, director of the UT Austin Office of Technology Commercialization. "Research like this addresses that priority and provides society with innovative solutions that grow our economy and improve the quality of life."

###

This work was funded by the Camille and Henry Dreyfus Foundation and the Welch Foundation.

Media Contact

Betsy Merrick
bmerrick@otc.utexas.edu
512-293-1174

 @UTAustin

http://www.utexas.edu 

Betsy Merrick | EurekAlert!
Further information:
http://dx.doi.org/10.1073/pnas.1721203115

More articles from Materials Sciences:

nachricht Goodbye, silicon? On the way to new electronic materials with metal-organic networks
17.10.2018 | Max-Planck-Institut für Polymerforschung

nachricht High entropy alloys hold the key to studying dislocation avalanches in metals
16.10.2018 | University of Illinois College of Engineering

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Im Focus: Storage & Transport of highly volatile Gases made safer & cheaper by the use of “Kinetic Trapping"

Augsburg chemists present a new technology for compressing, storing and transporting highly volatile gases in porous frameworks/New prospects for gas-powered vehicles

Storage of highly volatile gases has always been a major technological challenge, not least for use in the automotive sector, for, for example, methane or...

Im Focus: Disrupting crystalline order to restore superfluidity

When we put water in a freezer, water molecules crystallize and form ice. This change from one phase of matter to another is called a phase transition. While this transition, and countless others that occur in nature, typically takes place at the same fixed conditions, such as the freezing point, one can ask how it can be influenced in a controlled way.

We are all familiar with such control of the freezing transition, as it is an essential ingredient in the art of making a sorbet or a slushy. To make a cold...

Im Focus: Micro energy harvesters for the Internet of Things

Fraunhofer IWS Dresden scientists print electronic layers with polymer ink

Thin organic layers provide machines and equipment with new functions. They enable, for example, tiny energy recuperators. In future, these will be installed...

Im Focus: Dynamik einzelner Proteine

Neue Messmethode erlaubt es Forschenden, die Bewegung von Molekülen lange und genau zu verfolgen

Das Zusammenspiel aus Struktur und Dynamik bestimmt die Funktion von Proteinen, den molekularen Werkzeugen der Zelle. Durch Fortschritte in der...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Conference to pave the way for new therapies

17.10.2018 | Event News

Berlin5GWeek: Private industrial networks and temporary 5G connectivity islands

16.10.2018 | Event News

5th International Conference on Cellular Materials (CellMAT), Scientific Programme online

02.10.2018 | Event News

 
Latest News

Robot-assisted sensor system for quality assurance of press-hardened components

17.10.2018 | Trade Fair News

Sensory Perception Is Not a One-Way Street

17.10.2018 | Life Sciences

Plant Hormone Makes Space Farming a Possibility

17.10.2018 | Agricultural and Forestry Science

VideoLinks
Science & Research
Overview of more VideoLinks >>>