Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Research Predicts When, How Materials Will Act

02.03.2015

Research highlighted as a top story for 2014

In science, it’s commonly known that materials can change in a number of ways when subjected to different temperatures, pressures or other environmental forces.


Florida State University

William Oates, associate professor of mechanical engineering

A material might melt or snap in half. And for engineers, knowing when and why that might happen is crucial information.

Now, a Florida State University researcher has laid out an overarching theory that explains why certain materials act the way they do. And the work has been included as one of the highlights of the past year in a top materials science journal, Smart Materials and Structures.

“The basic idea is if I was going to tell you that I can predict that this piece of material is going to break and you asked me how confident I am this is really true, we have to resort to statistics and probability,” said William Oates, associate professor of mechanical engineering at the FAMU-FSU College of Engineering. “Ultimately, we would like to say that this material has a 5 percent probability of breaking, for example.”

For Oates’ paper, he specifically examined ferroelectric materials. Ferroelectric materials are materials that experience spontaneous electric polarization, meaning the positive and negative charges occur in opposite directions and can also be reversed. Importantly, the change in charge also produces a shape change that provides a novel material that can be used as an actuator or a sensor or both simultaneously.

Ferroelectric materials are commonly used in the biomedical industry for viewing inside the body using ultrasound imaging. Scientists are also trying to use them for new solar cells.

“The material is pretty pervasive in a number of fields,” Oates said. “So understanding how the material behaves and trying to come up with new compositions is a pretty active area of research.”

Like many scientific endeavors, nothing came easy. His original paper laid out a significantly different theory and was rejected by the journal, so he had to completely go back to the drawing board.

He then stumbled across a quantum theorem and began working with it, comparing quantum simulations of electronic structures with continuum theories often used in engineering design.

It gave him the answers he needed and a stronger backing for a more unified continuum theory that is much faster to calculate relative to quantum mechanics. However, continuum approximations still contain uncertainty.

To address this issue, he used a special statistical method, known as Bayesian statistics, to quantify confidence in the model’s predictive power.

“With this new tool, we can apply it to all sorts of materials and basically quantify how good are we as engineers at approximating nature without spending countless numbers of hours on a computer,” Oates said.

Contact Information
Kathleen Haughney
Research Media & Content Specialist
khaughney@fsu.edu
Phone: 850-644-1489

Kathleen Haughney | newswise
Further information:
http://www.fsu.edu/

More articles from Materials Sciences:

nachricht Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern
20.07.2018 | Princeton University

nachricht Relax, just break it
20.07.2018 | DOE/Argonne National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>