New Multiferroic Materials from Building Blocks

Figure. A chemical design strategy for creating artificial multiferroics using oxide nanosheets. Copyright : NIMS

A research group led by principal investigator Minoru Osada and fellow Takayoshi Sasaki, International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), successfully developed room temperature multiferroic materials by a layer-by-layer assembly of nanosheet building blocks. Multiferroic materials are expected to play a vital role in the development of next-generation multifunctional electronic devices.

The design of new multiferroics, or materials that display both ferroelectricity and ferromagnetism, is of fundamental importance for new electronic technologies.

However, the co-existence of ferroelectricity and magnetic order at room temperature in single compounds is rare, and heterostructures with such multiferroic properties have only been made with complex techniques (such as pulsed-laser deposition and molecular beam epitaxy).

Seeking to develop room-temperature multiferroics, the research group utilized a new chemical design for artificial multiferroic thin films using two-dimensional oxide nanosheets as building blocks (Figure 1). This approach enables engineering the interlayer coupling between the ferromagnetic and ferroelectric orders, as demonstrated by artificial superlattices composed of ferromagnetic Ti0.8Co0.2O2 nanosheets and dielectric perovskite-structured Ca2Nb3O10 nanosheets.

The (Ti0.8Co0.2O2/Ca2Nb3O10/Ti0.8Co0.2O2) superlattices exhibit the multiferroic effects at room temperature, which can be modulated by tuning the interlayer coupling (i.e., the stacking sequence).

This study opens a pathway to create new artificial materials with tailored multiferroic properties. In addition, the successful development of room temperature multiferroic nanofilms may lead to their application to new memory devices, taking advantage of their multifunctionality and low-voltage operation.

This study was published in the online version of the Journal of the American Chemical Society on June 13, 2016.

Associated links

Journal information

(“Coexistence of Magnetic Order and Ferroelectricity at 2D Nanosheet Interfaces”, Bao-Wen Li, Minoru Osada, Yasuo Ebina, Shigenori Ueda, and Takayoshi Sasaki; J. Am. Chem. Soc., 2016, 138 (24), pp 7621–7625; DOI: 10.1021/jacs.6b02722

Media Contact

Mikiko Tanifuji Research SEA

More Information:

http://www.researchsea.com

All latest news from the category: Materials Sciences

Materials management deals with the research, development, manufacturing and processing of raw and industrial materials. Key aspects here are biological and medical issues, which play an increasingly important role in this field.

innovations-report offers in-depth articles related to the development and application of materials and the structure and properties of new materials.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors