Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Model Clarifies Photoexcited Thin-Film Lattice Dynamics

19.11.2014

Comprehensive new study in the journal "Structural Dynamics" looking at thin films helps to make sense of physical and chemical properties of a wide range of materials

A research team from Germany developed an analytical model to describe the structural dynamics of photoexcited thin films and verified it by ultrafast X-ray diffraction.


Time-resolved X-ray diffraction on a laser-excited thin film which is transiently split in an expanded and a compressed sub layer due to coherent lattice dynamics.

Daniel Schick

Lattice dynamics, atomic movements in a crystal structure, can influence the physical and chemical properties of a material. The phenomenon can be directly studied using ultrafast X-ray diffraction, in which femtosecond X-ray pulses take snapshots of the atomic positions in a crystal by interacting with the structure at the core electronic level.

However, no comprehensive study has yet been carried out to characterize the photoexcited lattice dynamics of an opaque thin film on a semi-infinite transparent substrate. As a result, ultrafast X-ray diffraction data for such samples can be challenging to interpret.

Now a new study in the journal Structural Dynamics, from AIP Publishing, builds a model to help interpret such data.

To study this common scenario, the researchers excited a thin film of metallic SrRuO3 deposited on a transparent SrTiO3 substrate with femtosecond near infrared laser pulses and subsequently probed the atomic structure with equally short hard X-ray pulses. By comparing the resulting time-resolved diffractograms for different film thicknesses and excitation conditions, they found that the lattice dynamics of the system depended on only four parameters: the thickness of the film, its longitudinal acoustic sound velocity, a scaling factor and a shape factor.

“The coherent lattice dynamics are involved in nearly any ultrafast experiment on laser-excited thin films and their time scale is mainly determined by the film thickness and its longitudinal sound velocity,” said Daniel Schick, a researcher at the University of Potsdam. They then incorporated these factors into an analytical model that can be used to explain the observed variation in the X-ray diffraction of different thin films.

Their model allows them to describe a rather puzzling finding: although a thin film is essentially heated by the laser excitation and should rapidly expand, a significant part of the film is compressed for a short time of only a few picoseconds after the laser pulse hits the sample. In the ultrafast X-ray diffraction this manifests in a transient “splitting” of the thin film’s Bragg peak, which provides direct information on the average atomic distances in the film. This observation can be directly linked to the spatial excitation profile of the thin opaque film, which is, in the simplest case, given by the optical absorption length of the laser light and is included as the shape factor in the analytical model.

After developing their model using this relatively simple model system, the researchers have applied it to study more complex ones, such as with a strong coupling of the lattice to charge or spin degrees of freedom in ferroelectric and magnetic materials.

The article, “Ultrafast lattice response of photoexcited thin films 1 studied by X-ray diffraction,” by Daniel Schick, Marc Herzog, André Bojahr, Wolfram Leitenberger, Andreas Hertwig, Roman Shayduk and Matias Bargheer appears in the journal Structural Dynamics on November 18, 2014 (DOI: 10.1063/1.4901228). After that date, it can be accessed at: http://scitation.aip.org/content/aip/journal/sdy/1/6/10.1063/1.4901228

The authors on this paper are affiliated with the Institute for Physics and Astronomy in Potsdam, Germany; the Helmholtz-Zentrum Berlin for Materials and Energy in Berlin; the Fritz Haber Institute of the Max Planck Society in Berlin; the BAM Federal Institute for Materials Research and Testing and the Deutsches Elektronen-Synchrotron.

ABOUT THE JOURNAL

Structural Dynamics is a journal devoted to research on the methods, techniques and understand of time-resolved changes in chemical, biological and condensed matter systems. See: http://sd.aip.org/

Contact Information
Jason Socrates Bardi, AIP
jbardi@aip.org
240-535-4954
@jasonbardi

Jason Socrates Bardi | newswise

More articles from Materials Sciences:

nachricht Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern
20.07.2018 | Princeton University

nachricht Relax, just break it
20.07.2018 | DOE/Argonne National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>