Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New method developed for timely detection of impending material failure

28.08.2015

International acclaim: doctoral candidate at the University of Siegen develops new method for detecting impact damage more quickly and more accurately.

It's hailing and a small crack develops in the windscreen; it first goes unnoticed and eventually turns into a problem. This type of scenario, which usually spells annoyance and expense in the case of a car, can become dangerous when it comes to aerospace: it happens when material damage occurs as a result of brief high loads, such as those produced by a collision with a bird.


Prof. Claus-Peter Fritzen (l.) und Doktorand Daniel Ginsberg neben einem Flugzeubauteil mit Sensoren.

Universität Siegen/Björn Bowinkelmann

The high performance fibre composite materials that are used are very sensitive to these kinds of impact loads. At the University of Siegen, Daniel Ginsberg has developed a new kind of monitoring system that registers an impact load more quickly and more accurately than other methods. Ginsberg uses fewer sensors than in previous methods, which makes load monitoring significantly less expensive and more attractive in terms of possible applications.

The doctoral candidate from the University of Siegen has already won international recognition for his paper entitled "Sparse Solution Strategy for Simultaneous Localization and Magnitude Estimation of Impact Loads". At this year's International Conference on Smart Materials and Structures in Vancouver, Canada, Ginsberg received the best student paper award.

The article that was submitted gives an account of the significant interim findings of Ginsberg's doctoral thesis, which he is writing as a member of the working group directed by Siegen Professor Claus-Peter Fritzen, who co-authored the paper.

Load monitoring systems measure vibrations of the material. The vibrations can be used to reconstruct the location and intensity of an impact. This makes it possible to predict and prevent damaging after-effects, which could even include material failure.

Ginsberg's monitoring system uses a new calculation method and has applied algorithms from mathematics to the problem of force reconstruction. His method is superior to previous ones in a number of respects.

"With other methods, the location of the impact has to be known for the force reconstruction," says Ginsberg. His calculations, by contrast, reveal the location of the impact, are more accurate and more reliable, and they require fewer sensors to achieve such results.

Björn Bowinkelmann | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-siegen.de

More articles from Materials Sciences:

nachricht Proteins imaged in graphene liquid cell have higher radiation tolerance
10.12.2018 | INM - Leibniz-Institut für Neue Materialien gGmbH

nachricht High-temperature electronics? That's hot
07.12.2018 | Purdue University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

Small but ver­sat­ile; key play­ers in the mar­ine ni­tro­gen cycle can util­ize cy­anate and urea

10.12.2018 | Life Sciences

New method gives microscope a boost in resolution

10.12.2018 | Physics and Astronomy

Carnegie Mellon researchers probe hydrogen bonds using new technique

10.12.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>