Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New metamaterial manipulates sound to improve acoustic imaging

17.12.2015

Researchers from North Carolina State University and Duke University have developed a metamaterial made of paper and aluminum that can manipulate acoustic waves to more than double the resolution of acoustic imaging, focus acoustic waves, and control the angles at which sound passes through the metamaterial. Acoustic imaging tools are used in both medical diagnostics and in testing the structural integrity of everything from airplanes to bridges.

"This metamaterial is something that we've known is theoretically possible, but no one had actually made it before," says Yun Jing, an assistant professor of mechanical and aerospace engineering at NC State and corresponding author of a paper describing the work.


The metamaterial, shown here, is made of paper and aluminum -- but its structure allows it to manipulate acoustic waves to more than double the resolution of acoustic imaging, focus acoustic waves, and control the angles at which sound passes through the metamaterial. Acoustic imaging tools are used in both medical diagnostics and in testing the structural integrity of everything from airplanes to bridges.

Credit: Chen Shen, North Carolina State University

Metamaterials are simply materials that have been engineered to exhibit properties that are not found in nature. In this case, the structural design of the metamaterial gives it qualities that make it a "hyperbolic" metamaterial. This means that it interacts with acoustic waves in two different ways.

From one direction, the metamaterial exhibits a positive density and interacts with acoustic waves normally - just like air. But from a perpendicular direction, the metamaterial exhibits a negative density in terms of how it interacts with sound. This effectively makes acoustic waves bend at angles that are the exact opposite of what basic physics would tell you to expect.

The practical effect of this is that the metamaterial has some very useful applications.

For one thing, the metamaterial can be used to improve acoustic imaging. Traditionally, acoustic imaging could not achieve image resolution that was smaller than half of a sound's wavelength. For example, an acoustic wave of 100 kilohertz (kHz), traveling through air, has a wavelength of 3.4 millimeters (mm) - so it couldn't achieve image resolution smaller than 1.7 mm.

"But our metamaterial improves on that," says Chen Shen, a Ph.D. student at NC State and lead author of the paper. "By placing the metamaterial between the imaging device and the object being imaged, we were able to more than double the resolution of the acoustic imaging - from one-half the sound's wavelength to greater than one-fifth."

The metamaterial can also focus acoustic waves, which makes it a flexible tool.

"Medical personnel and structural engineers sometimes need to focus sound for imaging or therapeutic purposes," Jing says. "Our metamaterial can do that, or it can be used to improve resolution. There are few tools out there that can do both."

Lastly, the metamaterial gives researchers more control over the angle at which acoustic waves can pass through it.

"For example, the metamaterial could be designed to block sound from most angles, leaving only a small opening for sound to pass through, which might be useful for microphones," Shen says. "Or you could leave it wide open - it's extremely flexible."

Right now, the prototype metamaterial is approximately 30 centimeters square, and is effective for sounds between 1 and 2.5 kHz.

"Our next steps are to make the structure much smaller, and to make it operate at higher frequencies," Jing says.

###

The paper, "Broadband Acoustic Hyperbolic Metamaterial," was published online Dec. 16 in the journal Physical Review Letters. The paper was co-authored by Ni Sui of NC State and Yangbo Xie, Wenqi Wang and Steven Cummer of Duke.

Media Contact

Matt Shipman
matt_shipman@ncsu.edu
919-515-6386

 @NCStateNews

http://www.ncsu.edu 

Matt Shipman | EurekAlert!

More articles from Materials Sciences:

nachricht Epoxy compound gets a graphene bump
14.11.2018 | Rice University

nachricht Automated adhesive film placement and stringer integration for aircraft manufacture
15.11.2018 | Fraunhofer IFAM

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>