Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New megalibrary approach proves useful for the rapid discovery of new materials

19.12.2018

Northwestern discovery tool is thousands of times faster than conventional screening methods

Different eras of civilization are defined by the discovery of new materials, as new materials drive new capabilities. And yet, identifying the best material for a given application--catalysts, light-harvesting structures, biodiagnostic labels, pharmaceuticals and electronic devices--is traditionally a slow and daunting task.


Laser-induced heating of nanoparticles on micropillars for carbon nanotube growth.

Credit: Northwestern University

The options are nearly infinite, particularly at the nanoscale (a nanometer is one-billionth of a meter) where material properties--optical, structural, electrical, mechanical and chemical--can significantly change, even at a fixed composition.

A new study published this week in the Proceedings of the National Academy of Sciences (PNAS) supports the efficacy of a potentially revolutionary new tool developed at Northwestern University to rapidly test millions (even billions) of nanoparticles to determine the best for a specific use.

"When utilizing traditional methods to identify new materials, we have barely scratched the surface of what is possible," said Northwestern's Chad A. Mirkin, the study's corresponding author and a world leader in nanotechnology research and its applications. "This research provides proof-of-concept--that this powerful approach to discovery science works."

The novel tool utilizes a combinatorial library, or megalibrary, of nanoparticles in a very controlled way. (A combinatorial library is a collection of systematically varied structures encoded at specific sites on a surface).

The libraries are created using Mirkin's Polymer Pen Lithography (PPL) technique, which relies on arrays (sets of data elements) with hundreds of thousands of pyramidal tips to deposit individual polymer "dots" of various sizes and composition, each loaded with different metal salts of interest, onto a surface. Once heated, these dots are reduced to metal atoms forming a single nanoparticle at fixed composition and size.

"By going small, we create two advantages in high throughput materials discovery," said Mirkin, the George B. Rathmann Professor of Chemistry in the Weinberg College of Arts and Sciences; professor of chemical and biological engineering, biomedical engineering and materials science and engineering in the McCormick School of Engineering; and executive director of Northwestern's International Institute for Nanotechnology (IIN).

"First, we can pack millions of features into square-centimeter areas, creating a path for making the largest and most complex libraries, to date. Second, by working at the sub-100 nanometer-length scale, size can become a library parameter, and much of the action, for example, in the field of catalysis, is on this length scale."

The new study is a partnership between Northwestern's IIN and the Air Force Research Laboratory as part of the U.S. Air Force Center of Excellence for Advanced Bioprogrammable Nanomaterials at Northwestern. The team utilized a megalibrary and an in situ Raman spectroscopy-based screening technique called ARES™ to identify Au3Cu (a gold-copper composition) as a new catalyst for synthesizing single-walled carbon nanotubes.

(ARES was developed by Benji Maruyama, leader, Flexible Materials and Processes Research Team, Materials & Manufacturing Directorate, Air Force Research Laboratory, and Rahul Rao, research scientist, Air Force Research Laboratory and UES, Inc.)

Carbon nanotubes are light, flexible and stronger-than-steel molecules used for energy storage, drug delivery and property-enhancing additives for many plastic materials. The screening process took less than one week to complete and is thousands of times faster than conventional screening methods.

"We were able to rapidly zero in on an optimal composition that produced the highest nanotube yield much faster than using conventional methods," said Maruyama, a study co-author. "The findings suggest we may have the ultimate discovery tool--a potential game changer in materials discovery."

###

The PNAS paper is titled "Catalyst discovery through megalibraries of nanomaterials." The lead authors of the study from Northwestern are Edward J. Kluender and James L. Hedrick. From the Air Force Research Laboratory, the lead author is Rahul Rao.

Megan Fellman | EurekAlert!
Further information:
https://news.northwestern.edu/stories/2018/december/new-megalibrary-approach-proves-useful-for-the-rapid-discovery-of-new-materials
http://dx.doi.org/10.1073/pnas.1815358116

More articles from Materials Sciences:

nachricht Unusual electron sharing found in cool crystal
31.07.2020 | Nagoya University

nachricht TU Graz Researchers synthesize nanoparticles tailored for special applications
30.07.2020 | Technische Universität Graz

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: TU Graz Researchers synthesize nanoparticles tailored for special applications

“Core-shell” clusters pave the way for new efficient nanomaterials that make catalysts, magnetic and laser sensors or measuring devices for detecting electromagnetic radiation more efficient.

Whether in innovative high-tech materials, more powerful computer chips, pharmaceuticals or in the field of renewable energies, nanoparticles – smallest...

Im Focus: Tailored light inspired by nature

An international research team with Prof. Cornelia Denz from the Institute of Applied Physics at the University of Münster develop for the first time light fields using caustics that do not change during propagation. With the new method, the physicists cleverly exploit light structures that can be seen in rainbows or when light is transmitted through drinking glasses.

Modern applications as high resolution microsopy or micro- or nanoscale material processing require customized laser beams that do not change during...

Im Focus: NYUAD astrophysicist investigates the possibility of life below the surface of Mars

  • A rover expected to explore below the surface of Mars in 2022 has the potential to provide more insights
  • The findings published in Scientific Reports, Springer Nature suggests the presence of traces of water on Mars, raising the question of the possibility of a life-supporting environment

Although no life has been detected on the Martian surface, a new study from astrophysicist and research scientist at the Center for Space Science at NYU Abu...

Im Focus: Manipulating non-magnetic atoms in a chromium halide enables tuning of magnetic properties

New approach creates synthetic layered magnets with unprecedented level of control over their magnetic properties

The magnetic properties of a chromium halide can be tuned by manipulating the non-magnetic atoms in the material, a team, led by Boston College researchers,...

Im Focus: A new method to significantly increase the range and stability of optical tweezers

Scientists of Tomsk Polytechnic University jointly with a team of the V.E. Zuev Institute of Atmospheric Optics of the Siberian Branch of the Russian Academy of Sciences have discovered a method to increase the operation range of optical traps also known

Optical tweezers are a device which uses a laser beam to move micron-sized objects such as living cells, proteins, and molecules. In 2018, the American...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“Conference on Laser Polishing – LaP 2020”: The final touches for surfaces

23.07.2020 | Event News

Conference radar for cybersecurity

21.07.2020 | Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

 
Latest News

Novel approach improves graphene-based supercapacitors

03.08.2020 | Information Technology

Germany-wide rainfall measurements by utilizing the mobile network

03.08.2020 | Information Technology

Drug discovery: First rational strategy to find molecular glue degraders

03.08.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>