Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New materials: Growing polymer pelts

19.11.2018

Vapor deposition of a liquid crystal layer with reactive molecules provides customized nanofibers for different applications -- publication in Science

Polymer pelts made of the finest of fibers are suitable for many different applications, from coatings that adhere well and are easy to remove to highly sensitive biological detectors.


These are nanofibers with different directions of rotation.

Illustration: Kenneth Cheng, University of Michigan

Researchers at Karlsruhe Institute of Technology (KIT) together with scientists in the United States have now developed a cost-effective process to allow customized polymer nanofibers to grow on a solid substrate through vapor deposition of a liquid crystal layer with reactive molecules. The researchers report on their innovative method in the journal Science. (DOI: 10.1126/science.aar8449)

Surfaces with specially aligned fibers are quite abundant in nature and perform different functions such as sensing, adhering and self-cleaning. For example, the feet of geckos are covered with millions of hairs that allow them to adhere to surfaces and pull off again very easily.

The synthesis of such surfaces from man-made materials opens up new perspectives for different applications. However, methods previously available for the production of polymer pelts on solid bases have been costly. What's more important, the size, shape and alignment of the fibers can only be controlled to a limited extent with conventional methods.

Researchers at the Institute of Functional Interfaces (IFG) of KIT, as well as at the University of Michigan, the University of Wisconsin-Madison and Cornell University in Ithaca, New York, have now developed a simple and therefore cost-effective process that allows polymer pelts to grow in a self-organized way.

The research group led by Professor Joerg Lahann, Head of the Department of New Polymers and Biomaterials at KIT's IFG and Director of the Biointerfaces Institute of the University of Michigan, present the new process in the journal Science.

First of all, they cover a carrier with a thin layer of liquid crystals, which are substances that are liquid, have directional properties and are otherwise used especially for screens and displays (liquid crystal displays - LCDs).

Next, the liquid crystal layer is exposed to activated molecules by vapor deposition. These reactive monomers penetrate the liquid crystalline layer and grow from the substrate into the liquid in the form of fine fibers.

As a result, polymer nanofibers are created that can be customized in length, diameter, shape and arrangement. The complex but precisely structured polymer pelts formed by the fibers are attractive for many different applications, especially for biological detectors, bioinstructive surfaces that interact with their environment, and for coatings with new properties.

This also includes surfaces with dry adhesion properties similar to those of gecko feet, although adhesion in nanofibers is based on a special spatial arrangement of the atoms in the molecules (chirality - handedness).

The German Research Foundation (DFG) funded the work at the "Molecular Structuring of Soft Matter" Collaborative Research Center (CRC). In the 3D Matter Made to Order (3DMM2O) cluster of KIT and the University of Heidelberg, which will be funded in the Excellence Strategy by the federal and state governments from January 2019, the focus will also be on customized materials.

The 3DMM2O Excellence Cluster, in which the Head of KIT's IFG, Professor Christof Wöll, is involved as one of the main researchers, combines natural and engineering sciences, focusing on three-dimensional additive production technologies from a molecular to macroscopic level.

Original publication:

Kenneth C. K. Cheng, Marco A. Bedolla-Pantoja, Young-Ki Kim, Jason V. Gregory, Fan Xie, Alexander de France, Christoph Hussal, Kai Sun, Nicholas L. Abbott, Joerg Lahann: Templated Nanofiber Synthesis via Chemical Vapor Polymerization into Liquid Crystalline Films. Science, 2018. DOI: 10.1126/science.aar8449

As "the Research University in the Helmholtz Association", KIT creates and conveys knowledge for society and the environment. The aim is to make significant contributions to global challenges in the fields of energy, mobility and information. To achieve this, around 9,300 employees are working together on a broad disciplinary basis in natural sciences, engineering, economics, humanities and social sciences. KIT offers research-oriented studies to prepare its 25500 students for responsible tasks in society, economy and science. Innovations at KIT bridge the gap between knowledge and application for the benefit of society, economic prosperity and the preservation of our natural resources.

This press release is available on the internet at: http://www.sek.kit.edu/presse.php

Media Contact

Monika Landgraf
presse@kit.edu
49-721-608-47414

 @KITKarlsruhe

http://www.kit.edu/index.php 

Monika Landgraf | EurekAlert!
Further information:
https://www.kit.edu/kit/english/pi_2018_147_new-materials-growing-polymer-pelts.php
http://dx.doi.org/10.1126/science.aar8449

More articles from Materials Sciences:

nachricht Proteins imaged in graphene liquid cell have higher radiation tolerance
10.12.2018 | INM - Leibniz-Institut für Neue Materialien gGmbH

nachricht High-temperature electronics? That's hot
07.12.2018 | Purdue University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

Small but ver­sat­ile; key play­ers in the mar­ine ni­tro­gen cycle can util­ize cy­anate and urea

10.12.2018 | Life Sciences

New method gives microscope a boost in resolution

10.12.2018 | Physics and Astronomy

Carnegie Mellon researchers probe hydrogen bonds using new technique

10.12.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>