Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New material could make aircraft deicers a thing of the past

16.03.2016

Instead of applying a deicing agent to strip ice from an aircraft's wings before stormy winter takeoffs, airport personnel could in the future just watch chunks slide right off without lifting a finger. Scientists report they have developed a liquid-like substance that can make wings and other surfaces so slippery that ice cannot adhere. The slick substance is secreted from a film on the wing's surface as temperatures drop below freezing and retreats back into the film as temperatures rise.

The researchers present their work today at the 251st National Meeting & Exposition of the American Chemical Society (ACS). ACS, the world's largest scientific society, is holding the meeting here through Thursday. It features more than 12,500 presentations on a wide range of science topics.


SLUGs coatings on the right three panels at a test station repel snow and ice, but snow builds up on an untreated panel (far left).

Credit: Chihiro Urata

The liquid-secreting materials the researchers developed are called self-lubricating organogels, or SLUGs. "The SLUGs technology has a host of formulations and applications, including in a gel form that can be encapsulated in a film coating on the surface of a wing or other device," says research director Atsushi Hozumi, Ph.D.

"We came upon this idea when we observed real slugs in the environment," Chihiro Urata, Ph.D., explains. "Slugs live underground in soils when it is daytime and crawl out at night. But we never see slugs covered in dirt. They secrete a liquid mucus on their skin, which repels dirt, and the dirt slides off. From this, we started focusing on the phenomenon called syneresis, the expulsion of liquid from a gel."

... more about:
»ACS »coating »liquids »physical effects

The gel and the liquid-repellent substance are held in a matrix of silicone resin. The mix is cured and applied to a surface as a nearly transparent and solid film coating, Urata explains. Both Urata and Hozumi are at the National Institute of Advanced Industrial Science & Technology (Japan).

The team examined the anti-icing properties of several types of organogels under tests at various temperatures, Urata says. The discovery of the material's thermo-responsive secretion properties was an unexpected surprise. The tests also showed that the secretion was a reversible process. The syneresis gradually starts when temperatures fall below freezing. So although ice can still form, it cannot adhere to the surface and it slips off. Once the temperature rises above freezing, the liquids return back to the film.

Urata sees potential applications for SLUGs beyond aircraft and singles out antifouling coatings in packaging, paints, ship bottoms, metal molds and more.

Their research is currently focusing on increasing the transparency of the SLUG's coating, Urata says. "We are planning a short-term project to apply the coating where transparency is essential. For example, we are just beginning a project to field-test the durability and visibility of SLUGs coating on signage in Japan's northern counties."

###

Their research is funded through a grant-in-aid for scientific research on innovative areas from the Japanese Ministry of Education, Culture, Sports, Science and Technology.

The American Chemical Society is a nonprofit organization chartered by the U.S. Congress. With more than 158,000 members, ACS is the world's largest scientific society and a global leader in providing access to chemistry-related research through its multiple databases, peer-reviewed journals and scientific conferences. Its main offices are in Washington, D.C., and Columbus, Ohio.

To automatically receive news releases from the American Chemical Society, contact newsroom@acs.org.

Note to journalists: Please report that this research is being presented at a meeting of the American Chemical Society.

Follow us: Twitter | Facebook

Title

Anti-Stick Coatings Using Self-Lubricating Organogels (SLUGs)

Abstract

Functional coatings with exceptional surface properties, such as liquid-repellency and low-friction/adhesion, have been commonly prepared by combining textured surfaces with long-chain perfluorinated compounds. However, unfortunately, the chemical and physical effects of the LPFCs on human health and environment have been viewed lately with concern. In addition, once such artificial surfaces are physically and chemically damaged, they permanently lose their surface properties. In contrast, some living things maintain their surface properties through secretion of plant waxes and mucus. Here, we report on novel coatings inspired by such biological systems. To realize long-lasting surface properties, we have particularly focused on the syneresis of organogels, which were prepared by hydrosilylation of 2 types of silicones, and several guest organic liquids. As compatibility between guest liquids and polymer matrixes (cross-linked polydimethylsiloxane) is decreased to a certain critical point which is induced by the chemical and/or physical effects, the guest liquids begins to gradually leach out to the outmost organogel surface. Thanks to this self-lubricating property, adhesion of various objects was effectively reduced, resulting in the excellent anti-sticking properties. Viscous liquids flowed on the syneretic organogel surface more freely than that of non-syneretic organogel surface. For the purpose of anti-icing applications, we tuned the critical incompatibility point our organogels, which possess reversible thermo-responsive secretion nature. In this case, the syneresis gradually starts when the temperature is cooled (< 0°C) and the syneresis liquids returns back into the organogel again by heating to room temperature. Thanks to this smart surface property, an ice-pillar formed on the organogel at -15°C easily slid off without any additional force. Furthermore, we have successfully demonstrated regeneration of superhydrophobicity artificially mimicking lotus leaves using n-octadecyltrichlorosilane as an active guest liquid. Our technique, demonstrated here, undoubtedly shows great potential for application in dynamic, multifunctional, and self-recovering coatings.

Media Contact

619-525-6215 (San Diego Press Center, March 13-16)

Michael Bernstein
202-872-6042 (D.C. Office)
301-275-3221 (Cell)
m_bernstein@acs.org

Katie Cottingham, Ph.D.
301-775-8455 (Cell)
k_cottingham@acs.org

@ACSpressroom
http://www.acs.org

Michael Bernstein | EurekAlert!

Further reports about: ACS coating liquids physical effects

More articles from Materials Sciences:

nachricht From foam to bone: Plant cellulose can pave the way for healthy bone implants
19.03.2019 | University of British Columbia

nachricht Additive printing processes for flexible touchscreens: increased materials and cost efficiency
19.03.2019 | INM - Leibniz-Institut für Neue Materialien gGmbH

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Laser processing is a matter for the head – LZH at the Hannover Messe 2019

25.03.2019 | Trade Fair News

A Varied Menu

25.03.2019 | Life Sciences

‘Time Machine’ heralds new era

25.03.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>