Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New material could lead to erasable and rewriteable optical chips

07.12.2016

A military drone flying on a reconnaissance mission is captured behind enemy lines, setting into motion a team of engineers who need to remotely delete sensitive information carried on the drone's chips. Because the chips are optical and not electronic, the engineers can now simply flash a beam of UV light onto the chip to instantly erase all content. Disaster averted.

This James Bond-esque chip is closer to reality because of a new development in a nanomaterial developed by Yuebing Zheng, a professor of mechanical engineering and materials science and engineering in the Cockrell School of Engineering. His team described its findings in the journal Nano Letters on Nov. 10.


This image is a video still that shows the researchers rewriting a waveguide, a component that guides light, using a laser on nanomaterial. (The waveguide is the horizontal line on the box.)

Credit: Cockrell School of Engineering

"The molecules in this material are very sensitive to light, so we can use a UV light or specific light wavelengths to erase or create optical components," Zheng said. "Potentially, we could incorporate this LED into the chip and erase its contents wirelessly. We could even time it to disappear after a certain period of time."

To test their innovation, the researchers used a green laser to develop a waveguide -- a structure or tunnel that guides light waves from one point to another -- on their nanomaterial. They then erased the waveguide with a UV light, and re-wrote it on the same material using the green laser. The researchers believe they are the first to rewrite a waveguide, which is a crucial photonic component and a building block for integrated circuits, using an all-optical technique.

Their main advancement is a specially designed hybrid nanomaterial that is akin to a child's Etch-A-Sketch toy -- only the material relies on light and tiny molecules to draw, delete and re-write optical components. Engineers and scientists are interested in rewritable components that use light rather than electricity to carry data because they hold potential for making devices faster, smaller and more energy-efficient than components made from silicon.

The concept of rewritable optics, which underpins optical storage devices such as CDs and DVDs, has been pursued intensely. The drawback to CDs, DVDs and other state-of-the-art rewritable optical components is that they require bulky, stand-alone light sources, optical media and light detectors.

In contrast, the UT Austin innovation allows for writing, erasing and rewriting to all happen on the two-dimensional (2-D) nanomaterial, which paves the way for nano-scale optical chips and circuits.

"To develop rewritable integrated nanophotonic circuits, one has to be able to confine light within a 2-D plane, where the light can travel in the plane over a long distance and be arbitrarily controlled in terms of its propagation direction, amplitude, frequency and phase," Zheng said. "Our material, which is a hybrid, makes it possible to develop rewritable integrated nanophotonic circuits."

The researchers' material starts with a plasmonic surface, which is made up of aluminum nanoparticles, on top of which sits a 280-nanometer polymer layer embedded with molecules that can respond to light. Due to quantum mechanics interactions with the light, the molecules can either become transparent, allowing the light waves to propagate, or they can absorb the light.

Another advantage of the material is that it can operate two light-transporting modes simultaneously -- called the hybrid mode. The material's dielectric waveguide mode can guide light propagation over a long distance, while the plasmonic mode is able to dramatically amplify the light signals within a smaller space.

"The hybrid mode takes the advantages of both dielectric waveguide mode and plasmonic resonance mode, and combines them together while circumventing the limits of each," Zheng said. "We realized an all-optical control through a technique, called photoswitchable Rabi splitting, which, for the first time, can be achieved in the hybrid plasmon-waveguide mode."

The integration between these two modes significantly improves the performances of the optical cavity in this hybrid nanomaterial, which features high quality factor and low optical loss and thus maximizes the coupling between the molecules and the hybrid mode.

There are challenges that must be addressed before an optical chip or nanophotonic circuit can be designed using this material, Zheng said, including optimizing the molecules to improve the stability of the re-writable waveguides and their performance for optical communications.

###

This research received funding from Beckman Young Investigator Program.

Media Contact

Sandra Zaragoza
Zaragoza@utexas.edu
512-471-2129

 @UTAustin

http://www.utexas.edu 

Sandra Zaragoza | EurekAlert!

More articles from Materials Sciences:

nachricht Epoxy compound gets a graphene bump
14.11.2018 | Rice University

nachricht Automated adhesive film placement and stringer integration for aircraft manufacture
14.11.2018 | Fraunhofer IFAM

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Epoxy compound gets a graphene bump

14.11.2018 | Materials Sciences

Microgel powder fights infection and helps wounds heal

14.11.2018 | Health and Medicine

How algae and carbon fibers could sustainably reduce the athmospheric carbon dioxide concentration

14.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>