Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New material could improve efficiency of computer processing and memory

23.08.2018

Discovery could have major impact on semiconductor industry

A team of researchers led by the University of Minnesota has developed a new material that could potentially improve the efficiency of computer processing and memory. The researchers have filed a patent on the material with support from the Semiconductor Research Corporation, and people in the semiconductor industry have already requested samples of the material.


This cross-sectional transmission electron microscope image shows a sample used for the charge-to-spin conversion experiment. The nano-sized grains of less than 6 nanometers in the sputtered topological insulator layer created new physical properties for the material that changed the behavior of the electrons in the material.

Credit: Wang Group, University of Minnesota

The findings are published in Nature Materials, a peer-reviewed scientific journal published by Nature Publishing Group.

"We used a quantum material that has attracted a lot of attention by the semiconductor industry in the past few years, but created it in unique way that resulted in a material with new physical and spin-electronic properties that could greatly improve computing and memory efficiency," said lead researcher Jian-Ping Wang, a University of Minnesota Distinguished McKnight Professor and Robert F. Hartmann Chair in electrical engineering.

The new material is in a class of materials called "topological insulators," which have been studied recently by physics and materials research communities and the semiconductor industry because of their unique spin-electronic transport and magnetic properties. Topological insulators are usually created using a single crystal growth process. Another common fabrication technique uses a process called Molecular Beam Epitaxy in which crystals are grown in a thin film. Both of these techniques cannot be easily scaled up for use in the semiconductor industry.

In this study, researchers started with bismuth selenide (Bi2Se3), a compound of bismuth and selenium. They then used a thin film deposition technique called "sputtering," which is driven by the momentum exchange between the ions and atoms in the target materials due to collisions. While the sputtering technique is common in the semiconductor industry, this is the first time it has been used to create a topological insulator material that could be scaled up for semiconductor and magnetic industry applications.

However, the fact that the sputtering technique worked was not the most surprising part of the experiment. The nano-sized grains of less than 6 nanometers in the sputtered topological insulator layer created new physical properties for the material that changed the behavior of the electrons in the material. After testing the new material, the researchers found it to be 18 times more efficient in computing processing and memory compared to current materials.

"As the size of the grains decreased, we experienced what we call 'quantum confinement' in which the electrons in the material act differently giving us more control over the electron behavior," said study co-author Tony Low, a University of Minnesota assistant professor of electrical and computer engineering.

Researchers studied the material using the University of Minnesota's unique high-resolution transmission electron microscopy (TEM), a microscopy technique in which a beam of electrons is transmitted through a specimen to form an image.

"Using our advanced aberration-corrected scanning TEM we managed to identify those nano-sized grains and their interfaces in the film," said Andre Mkhoyan, a University of Minnesota associate professor of chemical engineering and materials science and electron microscopy expert.

Researchers say this is only the beginning and that this discovery could open the door to more advances in the semiconductor industry as well as related industries, such as magnetic random access memory (MRAM) technology.

"With the new physics of these materials could come many new applications," said Mahendra DC (Dangi Chhetri), first author of the paper and a physics Ph.D. student in Professor Wang's lab.

Wang agrees that this cutting-edge research could make a big impact.

"Using the sputtering process to fabricate a quantum material like a bismuth-selenide-based topological insulator is against the intuitive instincts of all researchers in the field and actually is not supported by any existing theory," Wang said. "Four years ago, with a strong support from Semiconductor Research Corporation and the Defense Advanced Research Projects Agency, we started with a big idea to search for a practical pathway to grow and apply the topological insulator material for future computing and memory devices. Our surprising experimental discovery led to a new theory for topological insulator materials.

"Research is all about being patient and collaborating with team members. This time there was a big pay off," Wang said.

###

In addition to Wang, Low, Mkhoyan, and DC, other researchers who were part of the team included University of Minnesota post-doctoral researchers and graduate students Mahdi Jamali, Junyang Chen, Danielle Hickey, Delin Zhang, Zhengyang Zhao, Hongshi Li, Patrick Quarterman, Yang Lv, and associate professor Aurelien Manchon from King Saud University, Saudi Arabia.

This research was funded by the Center for Spintronic Materials, Interfaces and Novel Architectures (C-SPIN) at the University of Minnesota, a Semiconductor Research Corporation program sponsored by the Microelectronics Advanced Research Corp. (MARCO) and the Defense Advanced Research Projects Agency (DARPA). This research used the University of Minnesota College of Science and Engineering Characterization Facility. The research was supported in part by the National Science Foundation through University of Minnesota Materials Research Science and Engineering Center (No. DMR-1420013); and the University of Minnesota College of Science and Engineering's Minnesota Nano Center supported in part by the National Science Foundation through the NSF through the National Nanotechnology Infrastructure Network (NNIN).

To read the full research paper entitled "Room-temperature high spin-orbit torque due to quantum confinement in sputtered BixSe(1-x) films," visit the Nature Materials website.

Media Contact

Rhonda Zurn
rzurn@umn.edu
612-626-7959

 @UMNews

http://www.umn.edu 

Rhonda Zurn | EurekAlert!
Further information:
https://twin-cities.umn.edu/news-events/new-material-could-improve-efficiency-computer-processing-and-memory
http://dx.doi.org/10.1038/s41563-018-0136-z

More articles from Materials Sciences:

nachricht Large-scale window material developed for PM2.5 capture and light tuning
18.02.2019 | University of Science and Technology of China

nachricht Engineered metasurfaces reflect waves in unusual directions
18.02.2019 | Aalto University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: (Re)solving the jet/cocoon riddle of a gravitational wave event

An international research team including astronomers from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has combined radio telescopes from five continents to prove the existence of a narrow stream of material, a so-called jet, emerging from the only gravitational wave event involving two neutron stars observed so far. With its high sensitivity and excellent performance, the 100-m radio telescope in Effelsberg played an important role in the observations.

In August 2017, two neutron stars were observed colliding, producing gravitational waves that were detected by the American LIGO and European Virgo detectors....

Im Focus: Light from a roll – hybrid OLED creates innovative and functional luminous surfaces

Up to now, OLEDs have been used exclusively as a novel lighting technology for use in luminaires and lamps. However, flexible organic technology can offer much more: as an active lighting surface, it can be combined with a wide variety of materials, not just to modify but to revolutionize the functionality and design of countless existing products. To exemplify this, the Fraunhofer FEP together with the company EMDE development of light GmbH will be presenting hybrid flexible OLEDs integrated into textile designs within the EU-funded project PI-SCALE for the first time at LOPEC (March 19-21, 2019 in Munich, Germany) as examples of some of the many possible applications.

The Fraunhofer FEP, a provider of research and development services in the field of organic electronics, has long been involved in the development of...

Im Focus: Regensburg physicists watch electron transfer in a single molecule

For the first time, an international team of scientists based in Regensburg, Germany, has recorded the orbitals of single molecules in different charge states in a novel type of microscopy. The research findings are published under the title “Mapping orbital changes upon electron transfer with tunneling microscopy on insulators” in the prestigious journal “Nature”.

The building blocks of matter surrounding us are atoms and molecules. The properties of that matter, however, are often not set by these building blocks...

Im Focus: University of Konstanz gains new insights into the recent development of the human immune system

Scientists at the University of Konstanz identify fierce competition between the human immune system and bacterial pathogens

Cell biologists from the University of Konstanz shed light on a recent evolutionary process in the human immune system and publish their findings in the...

Im Focus: Transformation through Light

Laser physicists have taken snapshots of carbon molecules C₆₀ showing how they transform in intense infrared light

When carbon molecules C₆₀ are exposed to an intense infrared light, they change their ball-like structure to a more elongated version. This has now been...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Global Legal Hackathon at HAW Hamburg

11.02.2019 | Event News

The world of quantum chemistry meets in Heidelberg

30.01.2019 | Event News

Our digital society in 2040

16.01.2019 | Event News

 
Latest News

How the intestinal fungus Candida albicans shapes our immune system

22.02.2019 | Life Sciences

Correct antibiotic dosing could preserve lung microbial diversity in cystic fibrosis

22.02.2019 | Health and Medicine

The evolution of grain yield – Decoding the genetic basis of floret fertility in wheat

22.02.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>